首页> 外文期刊>International journal of hydrogen energy >Effect of preparation method on the performance of the Ni/Al_2O_3 catalysts for aqueous-phase reforming of ethanol: Part II-characterization
【24h】

Effect of preparation method on the performance of the Ni/Al_2O_3 catalysts for aqueous-phase reforming of ethanol: Part II-characterization

机译:制备方法对Ni / Al_2O_3乙醇水相重整催化剂性能的影响:第二部分表征

获取原文
获取原文并翻译 | 示例
       

摘要

In the first part of this paper [1], we have discussed the effect of preparation method on the performance of Ni/Al_2O_3 catalysts for aqueous-phase reforming of ethanol (EtOH). One catalyst was synthesized using a sol-gel method (SG). The other was synthesized by adding nickel nitrate to a solution combustion synthesized alumina support (SCS). Based on the product distribution, we proposed the reaction pathway as a mixture of dehydro-genation of EtOH to acetaldehyde followed by C-C bond breaking to produce CO and CH4 and oxidation of acetaldehyde to acetic acid followed by decarbonylation to CO_2 and CH_4. CH_4 (C_2H_6 and C_3H_8 also) can form via Fischer-Tropsch reactions of CO/CO_2 with H_2. The CH_4 (C_2H_6 and C_3H_8) reacts to form hydrogen and carbon monoxide through steam reforming, while CO converts to CO_2 mostly through the water-gas shift reaction (WGSR). The SG catalysts showed poorer WGSR activity than the SCS catalysts. The difference of the metal particle size distribution governed by preparation method appeared to be the key factor of controlling catalytic efficiency, but some contradictory results could not be explained. In this paper, we report the microstructural and phase compositional differences of the catalysts imposed by the variation of the preparation methods. The XRD analysis, TEM characterization, and H_2-pulse chemisorptions showed that the SG samples sintered and metal particles grew during heat treatment and catalytic reaction, but for the SCS samples these changes are much less severe under similar conditions. N_2 adsorption/desorption analysis showed that the used SCS(10%) catalyst contained a mesoporous structure of higher pore volume and the SG(%10) catalyst contained macro pores of smaller pore volume. The X-ray photoelectron spectroscopy (XPS) analysis of the used samples demonstrated less coke deposition and less bulk spinel formation on the SCS(10%) sample than that on the SG(10%) sample. These factors may be responsible for higher water gas shift activity in the SCS(10%) sample than that in the SG(%10) catalyst. For the CM(10%) sample, the large particle size and low dispersion of metal on the support were responsible for lower EtOH conversion, H_2 & CO_2 selectivity, and TOF values. Additionally, the XPS data showed that the SCS(2%) and SG(2%) catalysts have more bulk spinel than the 10% Ni samples and for SCS(2%) sample this is the highest. This diminishes the advantages of smaller Ni particle sizes and less C deposition for them, and explains the apparently anomalous kinetic results observed in the first part of the paper.
机译:在本文的第一部分[1]中,我们讨论了制备方法对Ni / Al_2O_3乙醇水相重整(EtOH)催化剂性能的影响。使用溶胶-凝胶法(SG)合成一种催化剂。通过将硝酸镍添加到溶液燃烧合成的氧化铝载体(SCS)中来合成另一种。根据产物分布,我们提出了反应途径,即将EtOH脱氢为乙醛,然后进行C-C键断裂以生成CO和CH4,然后将乙醛氧化为乙酸,再将羰基脱羰为CO_2和CH_4。 CH_4(也可以是C_2H_6和C_3H_8)可以通过CO / CO_2与H_2的费托反应形成。 CH_4(C_2H_6和C_3H_8)通过蒸汽重整反应形成氢气和一氧化碳,而CO主要通过水煤气变换反应(WGSR)转化为CO_2。 SG催化剂显示出比SCS催化剂差的WGSR活性。制备方法控制的金属粒度分布的差异似乎是控制催化效率的关键因素,但不能解释一些矛盾的结果。在本文中,我们报告了制备方法的变化对催化剂的微观结构和相组成的影响。 XRD分析,TEM表征和H_2脉冲化学吸附表明,在热处理和催化反应过程中,烧结的SG样品和金属颗粒生长,但是对于SCS样品,这些变化在相似条件下不那么严重。 N_2吸附/解吸分析表明,所用的SCS(10%)催化剂具有较高孔体积的介孔结构,而SG(%10)催化剂包含较小孔体积的大孔。使用过的样品的X射线光电子能谱(XPS)分析表明,与SG(10%)样品相比,SCS(10%)样品上的焦炭沉积更少,块状尖晶石的形成更少。这些因素可能导致SCS(10%)样品中的水煤气变换活性高于SG(%10)催化剂中的水煤气变换活性。对于CM(10%)样品,大粒径和金属在载体上的低分散性是导致EtOH转化率,H_2和CO_2选择性和TOF值较低的原因。此外,XPS数据显示,与10%的Ni样品相比,SCS(2%)和SG(2%)催化剂具有更大的尖晶石,对于SCS(2%)样品,这是最高的。这减少了镍颗粒较小和碳沉积较少的优点,并解释了在论文的第一部分中观察到的明显异常的动力学结果。

著录项

  • 来源
    《International journal of hydrogen energy》 |2012年第24期|18815-18826|共12页
  • 作者单位

    Department of Chemical Engineering, New Mexico Institute of Technology, Socorro, NM 87801, USA;

    Center for Microengineered Materials and Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA;

    Center for Microengineered Materials and Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA;

    PRRC, New Mexico Institute of Technology, Socorro, NM 87801, USA;

    Center for Microengineered Materials and Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131, USA;

    Department of Chemical Engineering, New Mexico Institute of Technology, Socorro, NM 87801, USA,Department of Materials Engineering, New Mexico Institute of Technology, Socorro, NM 87801, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    aqueous phase reforming; XRD; XPS; BET; combustion synthesis; sol-gel;

    机译:水相重整;XRD;XPS;打赌;燃烧合成溶胶凝胶;
  • 入库时间 2022-08-18 00:28:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号