首页> 外文期刊>International journal of hydrogen energy >Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production
【24h】

Temperature resistant mutants of Rhodobacter capsulatus generated by a directed evolution approach and effects of temperature resistance on hydrogen production

机译:通过定向进化方法产生的荚膜红球菌的耐温突变体及其对产氢的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogen (H_2) is a promising alternative energy carrier which can be produced biologically. Rhodobacter capsulatus, a non-sulfur purple photosynthetic bacterium, can produce H_2 under nitrogen-limited, photoheterotrophic conditions by using reduced carbon sources such as simple organic acids. Outdoor closed photobioreactors; used for biological H_2 production are located under direct sunlight, as a resu bioreactors are exposed to temperature fluctuations during day time. In this study to overcome this problem, temperature-resistant mutants (up to 42 ℃) of R. capsulatus were generated in this study by a directed evolution approach. Eleven mutant strains of R. capsulatus DSM 1710 were obtained by initial ethyl methane sulfonate (EMS) mutagenesis of the wild-type strain, followed by batch selection at gradually increasing temperatures up to 42 ℃ under respiratory conditions. The genetic stability of the mutants was tested and eight were genetically stable. Moreover, H_2 production of mutant strains was analyzed; five mutants produced higher amounts of H_2 when compared to the DSM 1710 wild-type strain and three mutants produced less H_2 by volume. The highest H_(2-) producing mutant (B41) produced 24% more H_2 compared to wild type, and the mutant with lowest H_(2-)production capacity (A52) generated 7% less H_2 compared to the wild type. These results indicated that heat resistance of R. capsulatus can be improved by directed evolution, which is a useful tool to improve industrially important microbial properties. To understand molecular changes that confer high temperature-resistance and high hydrogen production capacity to these mutants, detailed transcriptomic and proteomic analyses would be necessary.
机译:氢(H_2)是一种有前途的替代能源载体,可以通过生物方法生产。荚膜红细菌是一种无硫的紫色光合细菌,可以通过使用还原性碳源(例如简单的有机酸)在氮受限的光异养条件下产生H_2。户外封闭式光生物反应器;因此,用于生物H_2生产的物质位于阳光直射下;生物反应器在白天会受到温度波动的影响。为了克服这个问题,本研究通过定向进化方法产生了荚膜红球菌的耐温突变体(最高42℃)。通过初始诱变野生型菌株的甲烷磺酸乙酯(EMS),然后在呼吸条件下逐渐升高温度至42℃,分批选择,获得了11株荚膜红球菌DSM 1710突变菌株。测试了突变体的遗传稳定性,并且八个具有遗传稳定性。此外,分析了突变菌株的H_2产生。与DSM 1710野生型菌株相比,五个突变体产生的H_2量更高,而三个突变体体积产生的H_2较少。与野生型相比,产生最高H_(2-)的突变体(B41)产生的H_2多24%,具有最低H_(2-)生产能力(A52)的突变体产生的H_2比野生型少。这些结果表明,可通过定向进化来提高荚膜红球菌的耐热性,这是改善工业上重要的微生物特性的有用工具。为了了解赋予这些突变体耐高温和高产氢能力的分子变化,将需要详细的转录组学和蛋白质组学分析。

著录项

  • 来源
    《International journal of hydrogen energy》 |2012年第21期|p.16466-16472|共7页
  • 作者单位

    TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Kocaeli 41470, Turkey,Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey;

    TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Kocaeli 41470, Turkey;

    Department of Molecular Biology and Genetics, Faculty of Science & Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey,Istanbul Technical University, Dr. Orhan OEcalgiray Molecular Biology, Biotechnology & Genetics Research Center, ITU-MOBGAM,34469 Maslak, Istanbul, Turkey;

    Department of Biology, Middle East Technical University, Ankara 06531, Turkey;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    rhodobacter capsulatus; temperature resistance; EMS mutagenesis; directed evolution; hydrogen production; photoheterotrophic growth;

    机译:荚膜红细菌耐温性EMS诱变;定向进化制氢光异养生长;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号