...
首页> 外文期刊>International journal of hydrogen energy >Mg_(2-x)Ti_xNi (x = 0, 0.5) alloys prepared by mechanical alloying for electrochemical hydrogen storage: Experiments and first-principles calculations
【24h】

Mg_(2-x)Ti_xNi (x = 0, 0.5) alloys prepared by mechanical alloying for electrochemical hydrogen storage: Experiments and first-principles calculations

机译:通过机械合金化制备用于电化学储氢的Mg_(2-x)Ti_xNi(x = 0,0.5)合金:实验和第一性原理计算

获取原文
获取原文并翻译 | 示例
           

摘要

Mg_(2-x)Ti_xNi (x = 0, 0.5) electrode alloys have been prepared by mechanical alloying (MA) under argon atmosphere at room temperature using a planetary high-energy ball mill. The microstructures of synthesized alloys are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effects of substitutional doping of Ti in Mg_2Ni phase have been investigated by first-principles density functional theory calculations. XRD analysis results indicate that Ti substitution for Mg in Mg_2Ni-type alloys results in the formation of TiNi (Pm-3m) and TiNi_3 intermetallics. With the increase of milling time, the TiNi phase captures Ni from Mg_2Ni to further form TiNi_3 phase and the MgO phase increases. The calculated results of enthalpy of formation indicate that the most preferable site of Ti substitution in Mg_2Ni lattice is Mg(6i) position and the stability of phase gradually decreases along the sequence TiNi_3 phase > TiNi phase > Mg_9Ti_3Mg(6i)Ni_6 Ti-doped phase > Mg_2Ni phase. SEM observations show that the average particle sizes of Mg_2Ni and Mg_(1.5)Ti_(0.5)Ni milled alloys decrease and increase, respectively with increasing the milling time. The TEM analysis results reveal that TiNi and Mg_2Ni coexist as nanocrystallites in the Mg_(1.5)Ti_(0.5)Ni alloy milled for 20 h. Electrochemical measurements indicate that the maximum discharge capacities of Mg_2Ni and Mg_(1.5)Ti_(0.5)Ni alloys rise and decline, respec tively with the prolongation of milling time. The Mg_(1.5)Ti_(0.5)Ni alloy milled for 20 h shows the highest discharge capacity among all milled alloys. The capacity retaining rate of Mg_(1.5)Ti_(0.5)Ni milled alloys is better than that of Mg_2Ni milled alloys.
机译:Mg_(2-x)Ti_xNi(x = 0,0.5)电极合金已经通过使用行星式高能球磨机在室温氩气气氛下机械合金化(MA)制备。合成合金的微观结构通过X射线衍射(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征。通过第一性原理密度泛函理论计算研究了Ti在Mg_2Ni相中的替代掺杂的影响。 XRD分析结果表明,Mg_2Ni型合金中Mg的Ti替代导致形成TiNi(Pm-3m)和TiNi_3金属间化合物。随着研磨时间的增加,TiNi相从Mg_2Ni中捕获Ni,进一步形成TiNi_3相,MgO相增加。生成焓的计算结果表明,Mg_2Ni晶格中最优选的Ti取代位是Mg(6i)位置,且相稳定性沿TiNi_3相> TiNi相> Mg_9Ti_3Mg(6i)Ni_6 Ti掺杂相的顺序逐渐降低> Mg_2Ni相。扫描电镜观察表明,Mg_2Ni和Mg_(1.5)Ti_(0.5)Ni磨削合金的平均粒径随着磨削时间的增加而减小和增大。 TEM分析结果表明,在研磨20 h的Mg_(1.5)Ti_(0.5)Ni合金中,TiNi和Mg_2Ni共存为纳米微晶。电化学测量表明,随着铣削时间的延长,Mg_2Ni和Mg_(1.5)Ti_(0.5)Ni合金的最大放电容量会上升和下降。铣削20 h的Mg_(1.5)Ti_(0.5)Ni合金在所有铣削合金中显示出最高的放电容量。 Mg_(1.5)Ti_(0.5)Ni铣削合金的容量保持率优于Mg_2Ni铣削合金。

著录项

  • 来源
    《International journal of hydrogen energy》 |2012年第19期|p.14248-14256|共9页
  • 作者单位

    FEMTO-ST, MN2S, Universite de Technologie de Bel/ort-Montbeliard, Site de Sevenans, 90010 Belfort cedex, France;

    FEMTO-ST, MN2S, Universite de Technologie de Bel/ort-Montbeliard, Site de Sevenans, 90010 Belfort cedex, France,FC LAB, Uniuersite de Technologie de Belfort-Montbeliard, Site de Seuenans, 90010 Belfort cedex, France;

    Institute of Materials Science and Engineering, Poznan University of Technology, Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland;

    Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Uniuersite' de Bourgogne 9 Av. A. Sauary, BP 47870, F-21078 Dijon,France;

    Institute of Materials Science and Engineering, Poznan University of Technology, Sklodowska-Curie 5 Sq., 60-965 Poznan, Poland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mg_2Ni-type alloy; Ti substitution; mechanical alloying; first-principles calculations; electrochemical hydrogen storage; properties;

    机译:Mg_2Ni型合金;钛替代;机械合金化;第一性原理计算;电化学储氢属性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号