首页> 外文期刊>International journal of hydrogen energy >Multi-variable optimisation of PEMFC cathodes based on surrogate modelling
【24h】

Multi-variable optimisation of PEMFC cathodes based on surrogate modelling

机译:基于替代模型的PEMFC阴极多变量优化

获取原文
获取原文并翻译 | 示例
       

摘要

A two-dimensional, steady state, isothermal agglomerate model for cathode catalyst layer design is presented. The design parameters, platinum loading, platinum mass ratio, electrolyte volume fraction, thickness of catalyst layer and agglomerate radius, are optimised by a multiple surrogate model and their sensitivities are analysed by a Monte Carlo method based approach. Two optimisation strategies, maximising the current density at a fix cell voltage and during a specific range, are implemented for the optima prediction. The results show that the optimal catalyst composition depends on operating cell voltages. At high current densities, the performance is improved by reducing electrolyte volume fraction to 7.0% and increasing catalyst layer porosity to 52.9%. At low current densities, performance is improved by increasing electrolyte volume fraction to 50.0% and decreasing catalyst layer porosity to 12.0%. High platinum loading and small agglomerate radius improve current density at all cell voltages. The improvement in fuel cell performance is analysed in terms of the electrolyte coating thickness, agglomerate specific area, conductivity, over-potential, volumetric current density and oxygen mole fraction within the cathode catalyst layer. The optimisation results are also validated by the agglomerate model at different cell voltages to confirm the effectiveness of the proposed methodologies.
机译:提出了用于阴极催化剂层设计的二维稳态等温附聚模型。通过多重替代模型优化设计参数,铂负载量,铂质量比,电解质体积分数,催化剂层厚度和附聚物半径,并通过基于蒙特卡洛方法的方法分析其敏感性。为实现最佳预测,实施了两种优化策略,即在固定电池电压和特定范围内最大化电流密度。结果表明,最佳催化剂组成取决于工作电池电压。在高电流密度下,通过将电解质体积分数降低至7.0%并将催化剂层孔隙率提高至52.9%,可以提高性能。在低电流密度下,通过将电解质体积分数增加到50.0%并将催化剂层孔隙率减少到12.0%,可以提高性能。高铂负载量和小的附聚物半径可提高所有电池电压下的电流密度。根据电解质涂层的厚度,附聚物的比表面积,电导率,超电势,体积电流密度和阴极催化剂层内的氧摩尔分数,分析了燃料电池性能的提高。通过在不同电池电压下的团聚模型也验证了优化结果,从而证实了所提出方法的有效性。

著录项

  • 来源
    《International journal of hydrogen energy》 |2013年第33期|14295-14313|共19页
  • 作者单位

    School of Chemical Engineering and Advanced Materials, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK,School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China;

    School of Electrical and Electronic Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;

    School of Chemical Engineering and Advanced Materials, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;

    School of Electrical and Electronic Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;

    School of Electrical and Electronic Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Proton exchange membrane fuel cell; Cathode catalyst layer; Agglomerate model; Design optimisation; Surrogate model; Global sensitivity;

    机译:质子交换膜燃料电池;阴极催化剂层;团块模型优化设计;替代模型;全球敏感性;
  • 入库时间 2022-08-18 00:27:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号