首页> 外文期刊>International journal of hydrogen energy >Evaluation of nanoparticle zirconia supports in the thermochemical water splitting cycle over iron oxides
【24h】

Evaluation of nanoparticle zirconia supports in the thermochemical water splitting cycle over iron oxides

机译:氧化铁热化学水分解循环中纳米氧化锆载体的评价

获取原文
获取原文并翻译 | 示例
       

摘要

Two-step solar therrnochemical water splitting offers a viable solution for employing renewable energy pathways for production of high-purity hydrogen, which can be used in fuel cells or for the production of liquid fuels. One promising thermochemical cycle uses iron oxide as the reactive material to split water in a relatively simple two-step process. However, this cycle requires high temperatures, on the order of 1500 degrees C. Therefore, to increase stability and thermal shock resistance, iron oxide was deposited onto high-temperature-stable ceramic oxides, such as zirconia (ZrO2) and yttria-stabilized zirconia (YSZ). Nanoparticle zirconia samples (n-ZrO2 and n-YSZ) were used in this study to increase the interactions between the iron oxide and the zirconia, and the resulting materials were compared with an iron oxide supported on a commercially available porous zirconia support (p-ZrO2). After heat treatment, these FeOx-ZrO2 and FeOx-YSZ materials were surprisingly stable and yielded consistent hydrogen production over several cycles. The hydrogen yield per cycle for the FeOx-YSZ material was consistently higher for all iron loadings compared with the FeOx-ZrO2 materials, and they both yielded significantly more hydrogen compared to the FeOx supported on the commercial ZrO2 support. Compared with the FeOx-YSZ, the iron loading had a larger effect on the hydrogen production over n-ZrO2-supported materials. X-ray diffraction (XRD) data indicated that iron was incorporated into the unit cell lattice of the n-YSZ supported material, which alleviated some of the detrimental iron oxide sintering inherent at the high-temperatures of the thermochemical water splitting reaction, and resulted in a more consistent and higher hydrogen production compared with the FeOx-ZrO2 material. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:两步式太阳能热化学分解法为采用可再生能源途径生产高纯度氢提供了可行的解决方案,该途径可用于燃料电池或生产液体燃料。一个有前途的热化学循环使用氧化铁作为反应性材料,以相对简单的两步过程将水分解。但是,该循环需要约1500摄氏度的高温。因此,为了提高稳定性和抗热冲击性,将氧化铁沉积在高温稳定的陶瓷氧化物上,例如氧化锆(ZrO2)和氧化钇稳定的氧化锆。 (YSZ)。在这项研究中,使用了纳米级氧化锆样品(n-ZrO2和n-YSZ)来增加氧化铁与氧化锆之间的相互作用,并将所得材料与负载在市售多孔氧化锆载体(p- ZrO2)。热处理后,这些FeOx / n-ZrO2和FeOx / n-YSZ材料出奇地稳定,并在多个循环中产生稳定的氢气。与所有FeOx / n-ZrO2材料相比,在所有铁负载下,FeOx / n-YSZ材料的每个周期的氢气产量始终较高,并且与负载在商业ZrO2载体上的FeOx相比,它们都产生更多的氢气。与FeOx / n-YSZ相比,铁负载比n-ZrO2负载的材料对产氢的影响更大。 X射线衍射(XRD)数据表明,铁已掺入n-YSZ负载材料的晶胞晶格中,从而减轻了热化学水分解反应高温下固有的一些有害的氧化铁烧结,从而导致与FeOx / n-ZrO2材料相比,具有更稳定,更高的产氢量。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号