首页> 外文期刊>International journal of hydrogen energy >LES of flame acceleration and DDT in hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics
【24h】

LES of flame acceleration and DDT in hydrogen-air mixture using artificially thickened flame approach and detailed chemical kinetics

机译:使用人工增厚火焰方法和详细的化学动力学的氢-空气混合物中火焰加速和滴滴涕的LES

获取原文
获取原文并翻译 | 示例
       

摘要

A large eddy simulation is performed to study the deflagration to detonation transition phenomenon in an obstructed channel containing premixed stoichiometric hydrogen-air mixture. Two-dimensional filtered reactive Navier-Stokes equations are solved utilizing the artificially thickened flame approach (ATF) for modeling sub-grid scale combustion. To include the effect of induction time, a 27-step detailed mechanism is utilized along with an in situ adaptive tabulation (ISAT) method to reduce the computational cost due to the detailed chemistry. The results show that in the slow flame propagation regime, the flame -vortex interaction and the resulting flame folding and wrinkling are the main mechanisms for the increase of the flame surface and consequently acceleration of the flame. Furthermore, at high speed, the major mechanisms responsible for flame propagation are repeated reflected shock-flame interactions and the resulting baroclinic vorticity. These interactions intensify the rate of heat release and maintain the turbulence and flame speed at high level. During the flame acceleration, it is seen that the turbulent flame enters the 'thickened reaction zones' regime. Therefore, it is necessary to utilize the chemistry based combustion model with detailed chemical kinetics to properly capture the salient features of the fast deflagration propagation. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:进行了大涡模拟,以研究在包含预混合化学计量氢-空气混合物的阻塞通道中的爆燃至爆轰过渡现象。使用人工增厚的火焰方法(ATF)对次网格规模燃烧进行建模,从而求解了二维滤波的反应式Navier-Stokes方程。为了包括诱导时间的影响,采用了27个步骤的详细机制以及原位自适应制表法(ISAT)来减少由于详细化学反应而产生的计算成本。结果表明,在缓慢的火焰传播过程中,火焰-涡旋相互作用以及由此产生的火焰折叠和起皱是增加火焰表面并因此加速火焰的主要机制。此外,在高速下,引起火焰传播的主要机理是反复反射的冲击-火焰相互作用以及由此产生的斜压涡度。这些相互作用增强了放热的速率,并将湍流和火焰速度维持在较高水平。在火焰加速过程中,可以看到湍流的火焰进入了“加厚反应区”区域。因此,有必要利用具有详细化学动力学的基于化学的燃烧模型来适当地捕捉快速爆燃传播的显着特征。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号