首页> 外文期刊>International journal of hydrogen energy >Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor
【24h】

Computational fluid dynamics study of hydrogen generation by low temperature methane reforming in a membrane reactor

机译:膜反应器中低温甲烷重整制氢的计算流体动力学研究

获取原文
获取原文并翻译 | 示例
       

摘要

Concentrated solar energy can be used to drive highly endothermic reactions, such as methane reforming. An attractive route is the parabolic trough technology, which is mature and relatively inexpensive but limited to temperatures below 600 degrees C, when methane conversions are low. However, high conversions are achievable if hydrogen is continuously removed from the reactive stream by a membrane selective to hydrogen. In this study, low temperature methane reforming in a membrane reactor is analyzed numerically by computational fluid dynamics over a wide range of operating parameters. Effects of temperature, steam-to-carbon ratio and space velocity on conversion, hydrogen recovery and carbon monoxide selectivity are specifically investigated. Our results show that concentration polarization can be significant. Below 500 degrees C the reactor performance is kinetically limited by the reforming reaction, while above this temperature hydrogen separation is a limiting factor. High hydrogen recovery is achievable even at high, industrially relevant space velocities. Importantly, hydrogen separation enhances water gas shift, reducing the concentration of carbon monoxide, the main source of coke formation at low temperatures. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
机译:集中的太阳能可用于驱动高度吸热的反应,例如甲烷重整。抛物线槽技术是一种有吸引力的途径,它是成熟且相对便宜的技术,但是当甲烷转化率较低时,温度限制在600摄氏度以下。但是,如果通过对氢有选择性的膜从反应物流中连续除去氢,则可以实现高转化率。在这项研究中,通过在广泛的运行参数范围内通过计算流体动力学来数值分析膜反应器中的低温甲烷重整。具体研究了温度,蒸汽碳比和空速对转化率,氢回收率和一氧化碳选择性的影响。我们的结果表明浓度极化可能是显着的。低于500℃,反应器性能受到重整反应的动力学限制,而高于该温度,氢分离是一个限制因素。即使在高的,与工业有关的空间速度下,也可以实现高氢回收率。重要的是,氢分离可增强水煤气的转化,降低一氧化碳的浓度,一氧化碳是低温下焦炭形成的主要来源。 Hydrogen Energy Publications,LLC版权所有(C)2015。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号