首页> 外文期刊>International journal of hydrogen energy >Graphene/poly(3,4-ethylenedioxythiophene)/Fe3O4 nanocomposite - An efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells
【24h】

Graphene/poly(3,4-ethylenedioxythiophene)/Fe3O4 nanocomposite - An efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells

机译:石墨烯/聚(3,4-乙撑二氧噻吩)/ Fe3O4纳米复合材料-一种用于废水处理微生物燃料电池连续发电的高效氧还原催化剂

获取原文
获取原文并翻译 | 示例
       

摘要

The ternary composite comprising reduced graphene oxide (rGO), poly(3,4-ethylenedioxythiophene) (PEDOT) and iron oxide (Fe3O4) nanorods is developed and its substantial contribution toward the green energy generation of air cathode microbial fuel cells (ACMFC) as an efficient oxygen reduction reaction (ORR) catalyst is evaluated by using the different electrochemical techniques under various regimes and conditions. The effectual distribution of needle like and cubic inverse spinel structured Fe3O4 nanorods over the PEDOT enveloped graphene sheets are elucidated from the electron micrographs and the growth and composite formation mechanisms of Fe3O4 and rGO/PEDOT/Fe3O4, respectively, are enunciated from the detailed structural characterizations. The extended surface area, high electrical conductivity, and large oxygen adsorption sites of rGO/PEDOT/Fe3O4 nanocomposite facilitate the excellent ORR kinetics, which yields the maximum ACMFC power density with the superior durability of more than 600 h. Thus the proposed strategy extends a new approach in bringing the advantages of active carbon, conductive polymer and nanomaterials in a single tool, which constructs the prepared ternary composite as a potential ORR contender to the commercially available catalysts. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:开发了包含还原型氧化石墨烯(rGO),聚(3,4-乙撑二氧噻吩)(PEDOT)和氧化铁(Fe3O4)纳米棒的三元复合材料,它对空气阴极微生物燃料电池(ACMFC)的绿色能源产生具有重大贡献。通过在各种方案和条件下使用不同的电化学技术来评估有效的氧还原反应(ORR)催化剂。通过电子显微照片阐明了针状和立方反尖晶石结构的Fe3O4纳米棒在PEDOT包覆的石墨烯片上的有效分布,并通过详细的结构表征阐明了Fe3O4和rGO / PEDOT / Fe3O4的生长和复合形成机理。 rGO / PEDOT / Fe3O4纳米复合材料的扩展表面积,高电导率和较大的氧吸附位点促进了出色的ORR动力学,从而产生了最大的ACMFC功率密度,并具有超过600小时的卓越耐用性。因此,所提出的策略扩展了将活性炭,导电聚合物和纳米材料的优点整合到一个工具中的新方法,该方法将制备的三元复合物构建为潜在的可与市售催化剂竞争的ORR竞争者。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2016年第30期|13208-13219|共12页
  • 作者单位

    Madurai Kamaraj Univ, Sch Chem, Dept Phys Chem, Madurai 625021, Tamil Nadu, India;

    Madurai Kamaraj Univ, Sch Chem, Dept Phys Chem, Madurai 625021, Tamil Nadu, India;

    Chonbuk Natl Univ, Hydrogen & Fuel Cell Res Ctr, Dept Energy Storage Convers Engn, R&D Educ Ctr Specialized,Grad Sch Hydrogen & Fuel, Jeonju 561756, South Korea;

    Kunsan Natl Univ, Dept Chem, Gunsan 573701, Jeollabuk Do, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active sites; Conductive channels; Electrical conductivity; Oxygen reduction; Tunnels;

    机译:活性部位;导电通道;电导率;氧减少;隧道;
  • 入库时间 2022-08-18 00:20:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号