首页> 外文期刊>International journal of hydrogen energy >Experimental validation for Li-ion battery modeling using Extended Kalman Filters
【24h】

Experimental validation for Li-ion battery modeling using Extended Kalman Filters

机译:使用扩展卡尔曼滤波器进行锂离子电池建模的实验验证

获取原文
获取原文并翻译 | 示例
       

摘要

The battery management systems (BMS) is an essential emerging component of both electric and hybrid electric vehicles (HEV) alongside with modem power systems. With the BMS integration, safe and reliable battery operation can be guaranteed through the accurate determination of the battery state of charge (SOC), its state of health (SOH) and the instantaneous available power. Therefore, undesired power fade and capacity loss problems can be avoided. Because of the electrochemical actions inside the battery, such emerging storage energy technology acts differently with operating and environment condition variations. Consequently, the SOC estimation mechanism should cope with the probable changes and uncertainties in the battery characteristics to ensure a permanent precise SOC determination over the battery lifetime. This paper aims to study and design the BMS for the Li-ion batteries. For this purpose, the system mathematical equations are presented. Then, the battery electrical model is developed. By imposing known charge/discharge current signals, all the parameters of such electrical model are identified using voltage drop measurements. Then, the extended kalman filter (EKF) methodology is employed to this nonlinear system to determine the most convenient battery SOC. This methodology is experimentally implemented using C language through micro-controller. The proposed BMS technique based on EKF is experimentally validated to determine the battery SOC values correlated to those reached by the Coulomb counting method with acceptable small errors. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:电池管理系统(BMS)和现代电力系统是电动和混合电动汽车(HEV)必不可少的新兴组件。通过BMS集成,可以通过准确确定电池的充电状态(SOC),其健康状态(SOH)和瞬时可用功率来确保安全可靠的电池运行。因此,可以避免不希望的功率衰减和容量损失问题。由于电池内部的电化学作用,这种新兴的存储能源技术在操作和环境条件变化的情况下具有不同的作用。因此,SOC估算机制应应对电池特性中可能发生的变化和不确定性,以确保在整个电池寿命内永久准确地确定SOC。本文旨在研究和设计用于锂离子电池的电池管理系统。为此,提出了系统数学方程。然后,开发电池电气模型。通过施加已知的充电/放电电流信号,使用电压降测量来识别这种电模型的所有参数。然后,将扩展卡尔曼滤波器(EKF)方法应用于该非线性系统,以确定最方便的电池SOC。该方法是通过微控制器使用C语言通过实验实现的。通过实验验证了所提出的基于EKF的BMS技术,以确定电池SOC值与通过库仑计数法获得的电池SOC值相关,且误差很小。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第40期|25509-25517|共9页
  • 作者单位

    SEGULA MATRA Technol, Informat & Commun Technol Elect Vehicles, F-25200 Montbeliard, France;

    Univ Bourgogne Franche Comte, UTBM, FCLab FR CNRS 3539, Femto ST UMR CNRS 6174, F-90010 Belfort, France;

    Univ Bourgogne Franche Comte, UTBM, FCLab FR CNRS 3539, Femto ST UMR CNRS 6174, F-90010 Belfort, France|Zagazig Univ, Elect Power & Machines Dept, Fac Engn, Zagazig 44519, Egypt;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Battery management system; Extended Kalman Filter; Hybrid electric vehicle; Li-ion battery; SOC;

    机译:电池管理系统;扩展卡尔曼滤波器;混合动力汽车;锂离子电池;SOC;
  • 入库时间 2022-08-18 00:19:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号