首页> 外文期刊>International journal of hydrogen energy >Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells
【24h】

Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells

机译:膜电极组件设计对质子交换膜燃料电池冷启动过程的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A transient multiphase model for cold start process is developed considering micro-porous layer (MPL), super-cooled water freezing mechanism and ice formation in cathode channel. The effect of MPL's hydrophobicity on the output performance and ice/water distribution is investigated under various startup temperatures, structural properties, membrane thicknesses and surrounding heat transfer coefficients. Under the maximum power startup mode, it is found that the hydrophobicity disparity of MPL has negligible influences when started from -15 degrees C, but it strongly affects the overall performance when started from -10 degrees C, especially after the cell survives the cold start. Decreasing the MPL's hydrophobicity leads to higher current density, meanwhile, it facilitates the super-cooled water's removal, which in turn reduces the ice formation in catalyst layer. However, excessive water accumulation happens if the generated water is hindered from getting into gas diffusion layer (GDL) due to the significant hydrophobicity gap. Weakening the GDL's hydrophobicity contributes to the water removal since the generated water is easier to diffuse out. A thinner membrane benefits the cold start owing to the reduction of ohmic loss and improvement of membrane hydration, and is more sensitive to the hydrophobicity of MPL. Ice formation in cathode channel is identified under various surrounding heat transfer coefficients. 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:考虑到微孔层(MPL),过冷水冻结机制和阴极通道中的结冰,建立了冷启动过程的瞬态多相模型。在各种启动温度,结构特性,膜厚度和周围的传热系数下,研究了MPL疏水性对输出性能和冰/水分布的影响。在最大功率启动模式下,发现从-15摄氏度启动时MPL的疏水性差异影响可忽略不计,但是从-10摄氏度启动时,MPL的疏水性差异对整体性能的影响很大,尤其是在电池经受冷启动后。降低MPL的疏水性会导致更高的电流密度,同时,这也有助于去除过冷水,从而减少了催化剂层中的冰形成。但是,如果由于明显的疏水性间隙而阻止生成的水进入气体扩散层(GDL),则会发生过多的水积聚。由于生成的水更易于扩散,因此减弱GDL的疏水性有助于除水。较薄的膜由于减少了欧姆损失并改善了膜的水合作用,因此有利于冷启动,并且对MPL的疏水性更敏感。在各种周围传热系数下识别阴极通道中的冰。 2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第40期|25372-25387|共16页
  • 作者单位

    Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 135 Yaguan Rd, Tianjin 300350, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Micro-porous layer; Ice formation; Water transport; Maximum power startup mode;

    机译:微孔层;结冰;输水;最大功率启动方式;
  • 入库时间 2022-08-18 00:19:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号