首页> 外文学位 >A novel process for fabricating membrane-electrode assemblies with low platinum loading for use in proton exchange membrane fuel cells.
【24h】

A novel process for fabricating membrane-electrode assemblies with low platinum loading for use in proton exchange membrane fuel cells.

机译:制造用于质子交换膜燃料电池的低铂负载的膜电极组件的新颖方法。

获取原文
获取原文并翻译 | 示例

摘要

A novel method based on pulse current electrodeposition (PCE) employing four different waveforms was developed and utilized for fabricating membrane-electrode assemblies (MEAs) with low platinum loading for use in low-temperature proton exchange membrane fuel cells. It was found that both peak deposition current density and duty cycle control the nucleation rate and the growth of platinum crystallites. Based on the combination of parameters used in this study, the optimum conditions for PCE were found to be a peak deposition current density of 400 mA cm-2, a duty cycle of 4%, and a pulse generated and delivered in the microsecond range utilizing a ramp-down waveform. MEAs prepared by PCE using the ramp-down waveform show performance comparable with commercial MEAs that employ ten times the loading of platinum catalyst. The thickness of the pulse electrodeposited catalyst layer is about 5-7 mum, which is ten times thinner than that of commercial state-of-the-art electrodes.;MEAs prepared by PCE outperformed commercial MEAs when subjected to a series of steady-state and transient lifetime tests. In steady-state lifetime tests, the average cell voltage over a 3000-h period at a constant current density of 619 mA cm-2 for the in-house and the state-of-the-art MEAs were 564 mV and 505 mV, respectively. In addition, the influence of substrate and carbon powder type, hydrophobic polymer content in the gas diffusion layer, microporous layer loading, and the through-plane gas permeability of different gas diffusion layers on fuel cell performance were investigated and optimized.;Finally, two mathematical models based on the microhardness model developed by Molina et al. [J. Molina, B. A. Hoyos, Electrochim. Acta, 54 (2009) 1784-1790] and Milchev [A. Milchev, "Electrocrystallization: Fundamentals of Nucleation And Growth" 2002, Kluwer Academic Publishers, 189-215] were refined and further developed, one based on pure diffusion control and another based on joint diffusion, ohmic and charge transfer control developed by Milchev [A. Milchev, J. Electroanal. Chem., 312 (1991) 267-275 & A. Milchev, Electrochim. Acta, 37 (12) (1992) 2229-2232]. Experimental results validated the above models and a strong correlation between the microhardness and the particle size of the deposited layer was established.
机译:开发了一种基于脉冲电流电沉积(PCE)的新颖方法,该方法采用了四个不同的波形,并用于制造低铂负载的膜电极组件(MEA),用于低温质子交换膜燃料电池。发现峰值沉积电流密度和占空比均控制成核速率和铂微晶的生长。根据这项研究中使用的参数组合,发现PCE的最佳条件是峰值沉积电流密度为400 mA cm-2,占空比为4%,并且在微秒范围内产生并传递了脉冲,利用下降波形。 PCE使用斜降波形制备的MEA的性能可与采用铂催化剂负载量十倍的商用MEA相比。脉冲电沉积催化剂层的厚度约为5-7微米,比市售最先进电极的厚度薄十倍;当经历一系列稳态时,PCE制备的MEA优于市售MEA和瞬态寿命测试。在稳态寿命测试中,对于内部和最先进的MEA,在恒定电流密度为619 mA cm-2的情况下,在3000小时内的平均电池电压为564 mV和505 mV,分别。此外,研究和优化了基材和碳粉类型,气体扩散层中疏水性聚合物的含量,微孔层的负载量以及不同气体扩散层的贯穿面气体渗透性对燃料电池性能的影响。基于Molina等人开发的显微硬度模型的数学模型。 [J. Molina,B.A.Hoyos,Electrochim。 Acta,54(2009)1784-1790]和Milchev [A. Milchev,“电结晶:成核和生长的基础”,2002,Kluwer学术出版社,189-215]进行了完善和进一步开发,一种基于纯扩散控制,另一种基于联合扩散,欧姆和电荷转移控制,由Milchev [A] 。 Milchev,J。Electroanal。 Chem。,312(1991)267-275&A.Milchev,Electrochim。 Acta,37(12)(1992)2229-2232]。实验结果验证了上述模型,并建立了显微硬度与沉积层粒径之间的强相关性。

著录项

  • 作者

    Karimi, Shahram.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Chemical.;Energy.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 410 p.
  • 总页数 410
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:22

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号