首页> 外文期刊>International journal of hydrogen energy >Effect of copper phthalocyanine (CuPc) on electrochemical hydrogen storage capacity of BaAl2O4/BaCO3 nanoparticles
【24h】

Effect of copper phthalocyanine (CuPc) on electrochemical hydrogen storage capacity of BaAl2O4/BaCO3 nanoparticles

机译:酞菁铜(CuPc)对BaAl2O4 / BaCO3纳米粒子电化学储氢能力的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A green synthesis method, solution combustion, were performed to synthesize BaAl2O4/BaCO3 nanoparticles by using stoichiometric amount of cations, Ba2+ and Al3+, in rational fraction of a fuel (maltose). Single fuel led to the formation of combustion reaction required further annealing at 700 degrees C in order to achieve pure crystals. The average crystallite sizes of the BaAl2O4/BaCO3 nanopowders were obtained about 36 nm using modified Scherrer equation. In order to improve the electrochemical hydrogen storage capacity of BaAl2O4/BaCO3 nanoparticles, a novel admixture was designed by introducing copper phthalocyanine (CuPc) into an inorganic phase. The reaction profiles of BaAl2O4/BaCO3-CuPc nano composites were confirmed by FTIR analysis. The structural and elemental analysis were confirmed the formation of nanocomposites. Morphological analysis confirmed the nanoscale formation of the host material. In addition, TEM results clearly confirmed the morphology of BaAl2O4/BaCO3 sample and its nanocomposites. The Band gap energy was calculated for host, CuPc and its respective nanocomposites using Tauc method obtained at 4.95, 2.10 and 2.54/4.89 eV, respectively. Electrochemical performances of the materials were confirmed a large I-pa for BaAl2O4/BaCO3-CuPc nanocomposites as compare to the host materials. This was directly reflected in hydrogen storage capacities of the materials (900 mA h/g discharge capacity for BaAl2O4/BaCO3 (similar to 3.17%) and >1500 mA h/g for BaAl2O4/BaCO3-CuPc nanocomposites (similar to 5.3%)). (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:通过使用化学计算量的阳离子(Ba2 +和Al3 +)以合理比例的燃料(麦芽糖)进行绿色合成方法(固溶燃烧)以合成BaAl2O4 / BaCO3纳米颗粒。单一燃料导致燃烧反应的形成,需要在700摄氏度下进一步退火才能获得纯净的晶体。使用改进的Scherrer方程获得了约36 nm的BaAl2O4 / BaCO3纳米粉的平均微晶尺寸。为了提高BaAl2O4 / BaCO3纳米颗粒的电化学储氢能力,通过将酞菁铜(CuPc)引入无机相中,设计了一种新型的混合物。 FTIR分析证实了BaAl2O4 / BaCO3-CuPc纳米复合材料的反应曲线。结构和元素分析证实了纳米复合材料的形成。形态分析证实了主体材料的纳米级形成。另外,TEM结果清楚地证实了BaAl2O4 / BaCO3样品及其纳米复合材料的形态。使用Tauc方法分别在4.95、2.10和2.54 / 4.89 eV处计算出主体,CuPc及其相应的纳米复合材料的带隙能。与主体材料相比,BaAl2O4 / BaCO3-CuPc纳米复合材料的I-pa值大。这直接反映在材料的储氢能力上(BaAl2O4 / BaCO3的放电容量为900 mA h / g(约3.17%),BaAl2O4 / BaCO3-CuPc纳米复合材料的放电容量为> 1500 mA / g(约5.3%)) 。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号