首页> 外文期刊>International journal of hydrogen energy >Alkaline anion exchange membrane degradation as a function of humidity measured using the quartz crystal microbalance
【24h】

Alkaline anion exchange membrane degradation as a function of humidity measured using the quartz crystal microbalance

机译:使用石英晶体微量天平测得的碱性阴离子交换膜降解与湿度的关系

获取原文
获取原文并翻译 | 示例
       

摘要

The solid polymer electrolyte (SPE) alkaline anion exchange membrane (AAEM) fuel cell exhibits facile oxygen reduction reaction (ORR) kinetics and has the ability to utilise non precious metal electrocatalysts. However, the AAEM is reported to suffer from increased instability within the alkaline media (degradation) via a number of routes, including nucleophilic elimination when operated at temperatures above 60 degrees C, somewhat eliminating the kinetic advantage of operating at higher temperatures. Nonetheless, modelling studies have indicated that the membrane hydration could show improved resistance to alkaline instability and subsequent degradation when operated at elevated temperatures. This investigation uses the quartz crystal microbalance (QCM) to examine the thermal stability of a commercial AAEM as a function of humidity. The results show that hydration improves ionomer resistance to degradation, as the ions within the system (namely the OH- nucleophile and cationic headgroups) become less reactive. In-line mass spectrometry data confirms that the ionomer degrades during the elevated temperature excursions used in this study. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:固体聚合物电解质(SPE)碱性阴离子交换膜(AAEM)燃料电池展现出简便的氧还原反应(ORR)动力学,并具有利用非贵金属电催化剂的能力。但是,据报道,AAEM通过多种途径在碱性介质中的不稳定性增加(降解),包括在高于60摄氏度的温度下操作时亲核消除,这在一定程度上消除了在高温下操作的动力学优势。尽管如此,模型研究表明,在高温下操作时,膜的水合作用可显示出对碱不稳定性和随后降解的改善的抵抗力。这项研究使用石英晶体微量天平(QCM)来检查商用AEM的热稳定性与湿度的关系。结果表明,水合提高了离聚物的抗降解性,因为系统中的离子(即OH-亲核基团和阳离子头基)的反应性降低。在线质谱数据证实,在该研究中使用的高温偏移期间,离聚物降解。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第9期|6243-6249|共7页
  • 作者单位

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England|UCL, Ctr Nat Inspired Engn, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    Natl Phys Lab, Environm Div, Teddington TW11 0LW, Middx, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

    UCL, Dept Chem Engn, Electrochem Innovat Lab, Torrington Pl, London WC1E 7JE, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fuel cells; Hofmann elimination; QCM; In-situ degradation; Thin film;

    机译:燃料电池;霍夫曼消除;QCM;原位降解;薄膜;
  • 入库时间 2022-08-18 00:19:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号