首页> 外文期刊>International journal of hydrogen energy >Effects of specific surface area and pore volume of activated carbon nanofibers on nanoconfinement and dehydrogenation of LiBH4
【24h】

Effects of specific surface area and pore volume of activated carbon nanofibers on nanoconfinement and dehydrogenation of LiBH4

机译:活性炭纳米纤维的比表面积和孔体积对LiBH4纳米约束和脱氢的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The effects of specific surface area (S-BET) and total pore volume (V-tot) of activated carbon nanofibers (ACNF) on nanoconfinement and dehydrogenation of LiBH4 are investigated. By varying activation time from 15 to 75 min, S-BET and V-tot of ACNF are altered in the ranges of 509-2752 m(2)/g and 0.38-2.17 mL/g, respectively. Melt infiltration of LiBH4 in ACNF is improved with the increment of S-BET and V-tot. Due to effective melt infiltration, not only high hydrogen content desorbed (up to 81% of theoretical capacity), but also the release of B2H6 is suppressed. All nanoconfined LiBH4 in ACNF show the main dehydrogenation at comparable temperature of 347-352 degrees C, implying that kinetic improvement is mainly from catalytic effects of carbon surface. However, effective nanoconfinement yields considerable reduction of onset and main dehydrogenation temperatures to 275 and 305 degrees C, respectively (Delta T = 125 and 170 degrees C, respectively, as compared with bulk LiBH4). Via remelting the as-prepared sample, further melt infiltration of LiBH4 into voids and/or small pores of ACNF can be obtained. The latter leads to closer contact and more interaction with carbon surface, resulting in the reduction of onset dehydrogenation temperature toward 268 degrees C and the enhancement of relative content of hydrogen released at low temperature (305 degrees C). Thus, multiple times or long length of time for melt infiltration can be an interesting choice to increase LiBH4 content up to the maximum loading of ACNF. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:研究了活性炭纳米纤维(ACNF)的比表面积(S-BET)和总孔体积(V-tot)对LiBH4纳米约束和脱氢的影响。通过将激活时间从15分钟更改为75分钟,ACNF的S-BET和V-tot分别在509-2752 m(2)/ g和0.38-2.17 mL / g的范围内变化。随着S-BET和V-tot的增加,LiBH4在ACNF中的熔体渗透得到改善。由于有效的熔体渗透,不仅解吸了高氢含量(最高理论容量的81%),而且还抑制了B2H6的释放。 ACNF中所有纳米限制的LiBH4在相当的347-352摄氏度的温度下均显示出主要的脱氢作用,这表明动力学改进主要来自碳表面的催化作用。然而,有效的纳米限制将起始脱氢温度和主脱氢温度分别降低至275和305摄氏度(与本体LiBH4相比,ΔT分别为125和170摄氏度)。通过重熔所制备的样品,可以使LiBH4进一步熔融渗入ACNF的空隙和/或小孔中。后者导致更紧密的接触并与碳表面发生更多的相互作用,从而导致起始脱氢温度降低至268摄氏度,并提高了低温(305摄氏度)释放的氢的相对含量。因此,多次或长时间的熔体渗透可能是增加LiBH4含量直至ACNF的最大负荷的有趣选择。 (C)2017氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第9期|6189-6201|共13页
  • 作者单位

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand;

    Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand;

    Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand;

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand|Suranaree Univ Technol, CoE AFM, Nakhon Ratchasima 30000, Thailand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanoconfinement; Active carbon; Surface; NMR; XPS;

    机译:纳米约束;活性炭;表面;NMR;XPS;
  • 入库时间 2022-08-18 00:19:07

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号