首页> 外文期刊>International journal of hydrogen energy >Experimental and numerical investigation of methane thermal partial oxidation in a small-scale porous media reformer
【24h】

Experimental and numerical investigation of methane thermal partial oxidation in a small-scale porous media reformer

机译:小型多孔介质重整器中甲烷热部分氧化的实验和数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study deals with the topic of synthesis gas (syngas) production from preheated, rich methane/air mixtures. The examined process is based on non-catalytic partial oxidation within a small-scale porous media based reformer, intended for application in Solid Oxide Fuel Cell (SOFC) based systems. For this purpose, process characteristics like temperature profiles within the porous material and exhaust syngas compositions were experimentally and numerically investigated under conditions that can be encountered in such systems. The soot content of the generated syngas was also measured using the technique of Scanning Mobility Particle Sizing. An important feature of the reformer, which was demonstrated during the experiments for a wide range of thermal loads (380-1895 kW/m(2)) and equivalence ratios (1.9-2.6), is the ability to operate based on stationary flames. This is achieved using a two-section design. The sections show a conical and a cylindrical geometry, whereas the same porous medium is installed in both of them. For this study, the solid matrix was created as packed bed of Al2O3-Raschig rings (62% open porosity). The process was simulated with a quasi-1D numerical model, which uses a volume-averaged approach. The model solves both the gas- and solid-phase energy balances explicitly and accounts for the radiative heat transport in the solid-phase. Peak temperatures measured within the porous zone provide evidence of superadiabatic combustion, which is also confirmed by the numerically predicted temperature profiles with the model. Syngas compositions reveal a maximum reforming efficiency of 65% based on H-2 and CO, while the soot limit of the process was found to lie at phi = 2.2, regardless of thermal load and preheat temperature of the fresh mixture. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:本研究涉及由预热的富甲烷/空气混合物生产合成气(合成气)的主题。所检查的过程基于小规模基于多孔介质的重整器中的非催化部分氧化,该重整器旨在用于基于固体氧化物燃料电池(SOFC)的系统。为此,在此类系统中可能遇到的条件下,通过实验和数值研究了多孔材料内的温度分布和排气合成气成分等过程特性。产生的合成气的烟灰含量也使用扫描移动性颗粒尺寸测定技术测量。重整器的一个重要功能是在固定火焰的基础上运行的能力,该重整器在针对各种热负荷(380-1895 kW / m(2))和当量比(1.9-2.6)的实验过程中得到了证明。这是通过两部分设计实现的。这些部分显示为圆锥形和圆柱形几何形状,而在两者中都安装了相同的多孔介质。对于本研究,将固体基质创建为Al2O3-Raschig环的填充床(62%的开孔率)。用准一维数值模型模拟了该过程,该模型使用了体积平均方法。该模型明确地解决了气相和固相的能量平衡,并考虑了固相中的辐射热传递。在多孔区内测得的峰值温度提供了超级绝热燃烧的证据,这也通过模型的数字预测温度曲线得到了证实。合成气组成显示出基于H-2和CO的最大重整效率为65%,而该过程的烟so极限位于phi = 2.2,而与新鲜混合物的热负荷和预热温度无关。 (C)2016氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2017年第1期|652-663|共12页
  • 作者单位

    Karlsruhe Inst Technol, Engler Bunte Inst, Combust Technol, Engler Bunte Ring 1, D-76131 Karlsruhe, Germany;

    Karlsruhe Inst Technol, Engler Bunte Inst, Combust Technol, Engler Bunte Ring 1, D-76131 Karlsruhe, Germany;

    TU Bergakad Freiberg, Inst Thermal Engn, Chair Gas & Heat Technol, Gustav Zeuner Str 7, D-09596 Freiberg, Sachsen, Germany;

    Inst Super Tecn, Dept Mech Engn, Av Rovisco Pais, P-1049001 Lisbon, Portugal;

    TU Bergakad Freiberg, Inst Thermal Engn, Chair Gas & Heat Technol, Gustav Zeuner Str 7, D-09596 Freiberg, Sachsen, Germany;

    Inst Super Tecn, Dept Mech Engn, Av Rovisco Pais, P-1049001 Lisbon, Portugal;

    Karlsruhe Inst Technol, Engler Bunte Inst, Combust Technol, Engler Bunte Ring 1, D-76131 Karlsruhe, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Porous media combustion; Methane reforming; Premixed combustion; Synthesis-gas production; Stationary flame stabilization;

    机译:多孔介质燃烧;甲烷重整;预混燃烧;合成气生产;固定式火焰稳定;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号