首页> 外文期刊>International journal of hydrogen energy >The importance of fuel variability on the performance of solid oxide cells operating on H_2/CO_2 mixtures from biohydrogen processes
【24h】

The importance of fuel variability on the performance of solid oxide cells operating on H_2/CO_2 mixtures from biohydrogen processes

机译:燃料可变性对在生物氢过程中的H_2 / CO_2混合物上运行的固体氧化物电池性能的重要性

获取原文
获取原文并翻译 | 示例
       

摘要

Biologically produced mixtures of H-2 and CO2 (biohydrogen) from processes such as dark fermentation or photo-fermentation are versatile feedstocks which can potentially be utilised in solid oxide cell (SOC) devices. In this work, solid oxide electrolysis of biohydrogen has been investigated for the first time and is compared directly with fuel cell mode utilisation. The performance and fuel processing of SOCs utilising biohydrogen have been characterised in greater detail than has been achieved previously through the use of experiments which combine electrochemical techniques with quadrupole mass spectrometry (QMS). The effects of fuel variability on SOC overpotentials and outputs have been established and it is shown that cell performance is not significantly affected provided the fuel composition stays within 40-60 vol% H-2. QMS measurements indicate H2O and CO production takes place in-situ via the reverse water-gas shift (RWGS) reaction. Electrical power production in fuel cell mode is predominantly through H-2 oxidation, whilst CO is converted in the WGS reaction to regenerate CO2 but does not contribute to electrical power production. In electrolysis mode, CO is produced simultaneously through electrochemical CO2 reduction and the RWGS reaction; H2O is electrochemically reduced to regenerate H-2. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:来自诸如暗发酵或光发酵之类的过程的H-2和CO2(生物氢)生物生产混合物是通用的原料,可以潜在地用于固体氧化物电池(SOC)设备中。在这项工作中,首次研究了生物氢的固体氧化物电解,并将其直接与燃料电池模式利用进行了比较。与以前通过使用将电化学技术与四极质谱法(QMS)结合在一起的实验所获得的结果相比,利用生物氢的SOC的性能和燃料处理的特征更为详尽。已经确定了燃料可变性对SOC超电势和输出的影响,并且显示出只要燃料成分保持在40-60vol%H-2内,电池性能就不会受到显着影响。 QMS测量表明,通过反向水煤气变换(RWGS)反应原位产生H2O和CO。燃料电池模式下的电力生产主要通过H-2氧化,而CO在WGS反应中转化为再生CO2,但对电力生产没有贡献。在电解模式下,通过电化学还原CO 2和RWGS反应同时产生CO。 H2O被电化学还原以再生H-2。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号