首页> 外文期刊>International journal of hydrogen energy >Green solid-state fabrication of new nanocomposites based on La-Fe-O nanostructures for electrochemical hydrogen storage application
【24h】

Green solid-state fabrication of new nanocomposites based on La-Fe-O nanostructures for electrochemical hydrogen storage application

机译:基于La-Fe-O纳米结构的新型纳米复合材料的绿色固态制造电化学储氢应用

获取原文
获取原文并翻译 | 示例
       

摘要

Nano-sized La-Fe-O (LFO) structures were fabricated via novel free-solvent and green solidstate route using La (acac)(3). H2O and Fe (acac)(3) complex precursors. Acetylacetonate (acac) in organometallic complex precursors control nucleation and growth of formed crystals with creation spatial barrier around the cations, and prevent nano-product agglomeration. The mechanism of role of acac has been explained in nanostructure formation. Changing of parameters in synthesis reaction consisting La:Fe molar ratio, calcination time and temperature in turn offer a virtuous control over the nanocomposites size and shape which various compositions of La2O3/LaFeO3, LaFeO3/La2O3 and LaFeO3/Fe2O3 obtained. The as-prepared La-Fe-O nano-products were characterized thorough Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), UV-Vis, BET and energy dispersive X-ray (EDX) analysis in terms of crystallinity structure, composition, porosity and morphology. Different formed La-Fe-O nanostructures were evaluated for electrochemical hydrogen storage capacity through chronopotentiometry technique in stable current (1 mA). The achieved La-Fe-O nanoparticles could be applied as a favorable candidate active material for electrochemical hydrogen storage. Optical, magnetic and reducible characteristics of La-Fe-O nanostructures have positive effect on electrochemical hydrogen storage capacity. It was found out that the LaFeO3/Fe2O3 nanocomposites have the best electrochemical hydrogen storage performance due to oxidation-reduction process of Fe2+/Fe3+ components which can help to charge-discharge process of hydrogen to increase the storage capability to 790 mAhg(-1) after 20 cycles. Also, the mixed metal oxides illustrate advanced discharge capacity than other binary oxides. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:使用La(ACAC)(3)通过新型游离溶剂和绿色固体钠途径制造纳米大小的LA-Fe-O(LFO)结构。 H 2 O和Fe(ACAC)(3)复合前体。乙酰丙酮(ACAC)在有机金属复合体前体中的含量和生长形成的晶体,在阳离子周围的产生空间屏障,并防止纳米产物附聚。 ACAC的作用机制已被解释为纳米结构形成。改变合成反应中的参数,包括LA:Fe摩尔比,煅烧时间和温度又提供了对纳米复合材料的良性控制,其各种组合物的La2O3 / LaFeO3,LafeO3 / La2O3和LaFeO3 / Fe2O3获得。如制备的LA-Fe-O纳米产物进行了彻底扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线衍射(XRD),傅立叶变换红外(FT-IR),UV-Vis,在结晶性结构,组成,孔隙度和形态方面下注和能量分散X射线(EDX)分析。通过稳定电流(1mA)的时分测定技术评估用于电化学储氢能力的不同形成的La-Fe-O纳米结构。达到的La-Fe-O纳米颗粒可以作为电化学储氢的有利候选活性材料。 La-Fe-O纳米结构的光学,磁性和可还原特性对电化学储氢容量具有积极影响。发现LafeO3 / Fe2O3纳米复合材料具有由于Fe2 + / Fe3 +组分的氧化还原过程具有最佳的电化学储氢性能,这有助于充电 - 氢气的放电过程,以将储存能力增加到790 mahg(-1) 20次循环后。而且,混合金属氧化物示出了比其他二进制氧化物的高级放电容量。 (c)2021氢能出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号