首页> 外文期刊>International journal of hydrogen energy >Degradations in the surface wettability and gas permeability characteristics of proton exchange membrane fuel cell electrodes under freeze-thaw cycles: Effects of ionomer type
【24h】

Degradations in the surface wettability and gas permeability characteristics of proton exchange membrane fuel cell electrodes under freeze-thaw cycles: Effects of ionomer type

机译:冻融循环下质子交换膜燃料电池的表面润湿性和透气性特性的降解:离聚物型的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Current state-of-the-art proton exchange membrane (PEM) fuel cell electrodes are typically comprised of either short-side-chain (SSC) or long-side-chain (LSC) ionomers, owing to their proven success in the electrode performance and durability under regular cell operation. However, the electrodes based on these two prominent ionomers have not been sufficiently investigated under sub-freezing conditions. In this study, the impact of ionomer type on the degradations of the surface wettability and gas permeability character- istics has been investigated for PEM fuel cell electrodes under freeze-thaw (F-T) cycles between 30 degrees C and -40 degrees C. The electrodes comprised of either SSC or LSC ionomers are manufactured with different catalyst loadings. It is found that the F-T cycles induce severe degradations in the electrodes, and the resulting surface morphologies differ greatly, depending on the ionomer type and catalyst loading. For a given catalyst loading, the SSC electrodes degrade more heavily than the LSC ones. Further, independent of the ionomer type, the high catalyst loading electrodes tend to degrade slower than their low catalyst loading counterparts. The SSC catalyst layers peel off from the electrodes virtually completely with the microporous layer largely degraded, inducing a highly corroded and heterogeneous surface morphology. The LSC electrodes experience relatively less degradations, thus the resulting surface morphologies are less corroded and more homogeneous. For all the electrodes, the morphological degradations cause a substantial increase in the gas permeability coefficients, but a decrease in the static contact angles. These increments and decrements correlate well with the severity of the surface degradations, and they are rapid and more substantial for the SSC electrodes. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:目前最先进的质子交换膜(PEM)燃料电池电极通常由短侧链(SSC)或长侧链(LSC)离聚物组成,由于它们在电极性能中成功成功常规细胞手术下的耐用性。然而,基于这两个突出的离聚物的电极未在冻结条件下充分研究。在该研究中,研究了离聚物类型对表面润湿性和透气性特性的降解的影响已经研究了30摄氏度在30℃和-40℃的循环下的PEM燃料电池电极。电极由SSC或LSC离聚物组成,用不同的催化剂载体制造。发现F-T循环诱导电极中严重降解,并且所得表面形态的差异很大,这取决于离聚物型和催化剂负载。对于给定的催化剂负载,SSC电极比LSC催化更重。此外,与离聚物型无关,高催化剂负载电极倾向于降低比其低催化剂负载对应物慢。 SSC催化剂层几乎完全从电极剥离,微孔层大致降解,诱导高度腐蚀性和异质的表面形态。 LSC电极经历相对较小的降解,因此所得表面形态较少腐蚀性且更均匀。对于所有电极,形态学降解导致透气系数的大幅增加,但静态接触角的降低。这些增量和递减随着表面降低的严重程度与SSC电极的严重程度相相关,并且对于SSC电极,它们是快速且更重要的。 (c)2018氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第54期|29892-29903|共12页
  • 作者单位

    Univ Waterloo Dept Mech & Mechatron Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada|Univ Waterloo Dept Mech & Mechatron Engn Lab Fuel Cell & Green Energy RD&D 20 20 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

    Univ Waterloo Dept Mech & Mechatron Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada|Univ Waterloo Dept Mech & Mechatron Engn Lab Fuel Cell & Green Energy RD&D 20 20 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

    Univ Waterloo Dept Mech & Mechatron Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada|Univ Waterloo Dept Mech & Mechatron Engn Lab Fuel Cell & Green Energy RD&D 20 20 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

    Univ Waterloo Dept Mech & Mechatron Engn 200 Univ Ave West Waterloo ON N2L 3G1 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Proton exchange membrane fuel cells; Short-side-chain ionomer; Long-side-chain ionomer; Electrode degradation; Freeze-thaw cycles;

    机译:质子交换膜燃料电池;短侧链离聚物;长侧链离聚物;电极降解;冻融循环;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号