首页> 外文期刊>International journal of hydrogen energy >Effects of force field and design parameters on the exergy efficiency and fuel utilization of microfluidic fuel cells
【24h】

Effects of force field and design parameters on the exergy efficiency and fuel utilization of microfluidic fuel cells

机译:力场和设计参数对微流体燃料电池的漏极效率和燃料利用的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Microfluidic fuel cells (MFCs) are novel systems that satisfy the critical requirements of having small dimensions and substantial power output for use in portable devices. In this study, three-dimensional mathematical models of two types of MFCs (flow-over and flowthrough) are developed, by coupling multiphysics consisting of microfluidic hydrodynamics, electrochemical reaction kinetics, and species transport of fluid. Moreover, gravity, exergy, and parametric sensitivity are studied, which have tremendous impact on fuel cell performance and have been frequently overlooked in previous literature. The reliability of the numerical model is demonstrated by the excellent consistency between simulation results and experimental data. First, a parametric analysis is conducted, which includes the design parameters and gravity effect. Following this, the fuel utilization and exergy efficiency are calculated for various design parameters. Finally, a sensitivity analysis is performed to evaluate the influence of the indicators on the cell performance. It is shown that a relatively stable performance is achieved with the flow-through MFC under interference from the external environment. The reactive sites of the flow-through MFC can be utilised effectively, whereas further promotion of the flow-over MFC is limited by its inherent drawback. In addition, the sensitivity analysis reveals that cell performance depends strongly on the flow rate and fuel concentration. The results can be beneficial for the investigation of cell performance optimization. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:微流体燃料电池(MFC)是一种新的系统,可满足具有小尺寸和大量功率输出的关键要求,以便在便携式设备中使用。在该研究中,通过耦合由微流体流体动力学,电化学反应动力学和流体的物种传输组成的多发性,开发了两种类型的MFCs(流过和流程)的三维数学模型。此外,研究了重力,漏洞和参数敏感性,对燃料电池性能产生了巨大影响,并且经常在以前的文献中被忽视。通过仿真结果和实验数据之间的优异一致性来证明了数值模型的可靠性。首先,进行参数分析,包括设计参数和重力效果。在此之后,针对各种设计参数计算燃料利用和漏洞效率。最后,进行敏感性分析以评估指标对细胞性能的影响。结果表明,通过从外部环境的干扰下流过MFC实现了相对稳定的性能。流通MFC的反应性位点可以有效地利用,而进一步推广流过MFC受其固有缺点的限制。此外,敏感性分析表明,细胞性能强烈取决于流速和燃料浓度。结果对细胞性能优化的调查有益。 (c)2020氢能源出版物LLC。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号