首页> 外文期刊>International journal of hydrogen energy >Optimization of the electrical performances in Solid Oxide Fuel Cells with room temperature sputter deposited Gd_(0.1)ce_(0.9)O_(1.95) buffer layers by controlling their granularity via the in-air annealing step
【24h】

Optimization of the electrical performances in Solid Oxide Fuel Cells with room temperature sputter deposited Gd_(0.1)ce_(0.9)O_(1.95) buffer layers by controlling their granularity via the in-air annealing step

机译:通过在空气中退火步骤控制颗粒大小,通过室温溅射沉积Gd_(0.1)ce_(0.9)O_(1.95)缓冲层来优化固体氧化物燃料电池的电性能

获取原文
获取原文并翻译 | 示例
       

摘要

Using room temperature sputtering, we have deposited Gd0.1Ce0.9O1.95 buffer layers at the cathode/electrolyte interface of 10 cm(2) circular Solid Oxide Fuel Cells. By suitably selecting the in air annealing step, we show the possibility to control the granular properties of the Gd0.1Ce0.9O1.95 buffer layers in order to optimize the Solid Oxide Fuel Cell's electrical performances. In particular, we maximise the buffer layer grain density via an annealing process with a plateau temperature of 800 degrees C, obtaining improvements in the final Solid Oxide Fuel Cell performances with an 8% increase in the current density at 800 mV and 700 degrees C with respect to the Solid Oxide Fuel Cell annealed at 1050 degrees C, and with a 59% increase in the current density at the same voltage and temperature when compared to the standard cells with the Gadolinium Doped Ceria buffer layer produced by lithographic processes. The achieved optimization procedure clearly illustrates the potentiality of the room temperature sputtering process followed by in-air annealing step in the control of the granularity of the deposited layers. Moreover, the obtained results open the way to further studies about the industrial scalability of the used technique and to its implementation in practical large scale cell production process. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:使用室温溅射,我们在10 cm(2)圆形固体氧化物燃料电池的阴极/电解质界面上沉积了Gd0.1Ce0.9O1.95缓冲层。通过适当地选择在空气中退火的步骤,我们展示了控制Gd0.1Ce0.9O1.95缓冲层的颗粒性质以优化固体氧化物燃料电池的电性能的可能性。特别是,我们通过平台温度为800摄氏度的退火工艺使缓冲层的晶粒密度最大化,从而在800 mV和700摄氏度的电流密度下增加了8%,从而提高了最终固体氧化物燃料电池的性能。与通过光刻工艺生产的掺nea二氧化铈缓冲层的标准电池相比,在1050℃退火的固体氧化物燃料电池具有更大的优势,并且在相同电压和温度下电流密度增加了59%。所实现的优化程序清楚地说明了室温溅射工艺的潜力,随后进行了空气退火步骤,以控制沉积层的粒度。而且,获得的结果为进一步研究所用技术的工业可扩展性及其在实际大规模电池生产过程中的实施开辟了道路。 (C)2020 Hydrogen Energy Publications LLC。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第23期|12997-13008|共12页
  • 作者

  • 作者单位

    Univ Salerno Dipartimento Ingn Ind DIIN I-84084 Fisciano SA Italy|CNR SPIN I-84084 Fisciano SA Italy;

    Univ Salerno Dipartimento Ingn Ind DIIN I-84084 Fisciano SA Italy;

    Univ Salerno CNR SPIN Dipartimento Fis ER Caianiello I-84084 Fisciano SA Italy;

    Cornell Univ Sch Appl & Engn Phys CLASSE Ithaca NY 14853 USA;

    SOLIDpower SpA I-38017 Mezzolombardo TN Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Gadolinium doped ceria; Solid oxide fuel cell; Sputtering; Annealing; Physical vapor deposition; Electrochemical impedance spectroscopy;

    机译:d掺杂的二氧化铈;固体氧化物燃料电池;溅射;退火;物理气相沉积;电化学阻抗谱;
  • 入库时间 2022-08-18 05:21:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号