首页> 外文期刊>International journal of hydrogen energy >High performance and stability of nanocomposite oxygen electrode for solid oxide cells
【24h】

High performance and stability of nanocomposite oxygen electrode for solid oxide cells

机译:固体氧化物电池用纳米复合氧电极的高性能和稳定性

获取原文
获取原文并翻译 | 示例
       

摘要

Solid oxide electrochemical cell (SOC) is a highly promising alternative for fuel conversion and power-to-gas due to its high efficiency and low emission. However, degradation resulting from the electrolyte-electrode interface is a major challenge in both fuel cell mode and electrolysis mode. Here, a co-sintering tri-layer structure cell with nano composite oxygen electrode is developed to mitigate the interface issue. A 10 x 10 cm(2) NiO/YSZ lYSZ lYSZ-La0.6Sr0.4Co0.2Fe0.8O3-25 (LSCF) cell has been conducted under different fuels in SOFC mode. A power density output of 558 mW/cm(2) @0.7 V-800 degrees C in wet H-2 and a durability of 300 h in simulated syngas have been obtained. The performance of LSF, LSCF and SSC oxygen electrodes have been studied in both SOFC and SOEC modes. It suggests that three oxygen electrodes have an order of SSC > LSCF > LSF in electrochemical performance, and an opposite order in stability of SOEC. The degradation of the LSCF and SSC can be derived from the solid-state reactions at the interface between Co-containing perovskites and YSZ during operation. It demonstrates that GDC and Ag modification can enhance the oxygen elettro destability by impeding the soli state reactions and the nanoparticles sintering. Results suggest that GDC has a negative effect on the cell performance and Ag has a positive effect, implying that enhancing the electric conductivity of YSZ-LSCF is the key to improve the cell performance. Moreover, cell with YSZ-SFM/GDC has been applied in CH4 assisted SOEC process (CH4-SOEC), in which a significant reduction of electricity consume can be realized. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:固体氧化物电化学电池(SOC)由于其高效率和低排放而成为燃料转化和电能转化为气体的极有希望的替代品。然而,在燃料电池模式和电解模式下,由电解质-电极界面引起的降解都是主要挑战。在此,开发了具有纳米复合氧电极的共烧结三层结构电池,以减轻界面问题。一个10 x 10 cm(2)的NiO / YSZ lYSZ lYSZ-La0.6Sr0.4Co0.2Fe0.8O3-25(LSCF)电池已在不同燃料下以SOFC模式进行。在湿H-2中,在0.7 V-800摄氏度下的功率密度输出为558 mW / cm(2),在模拟合成气中的耐久性为300 h。在SOFC和SOEC模式下均已研究了LSF,LSCF和SSC氧电极的性能。这表明三个氧电极的电化学性能顺序为SSC> LSCF> LSF,而SOEC的稳定性相反。 LSCF和SSC的降解可源自操作过程中含Co钙钛矿与YSZ之间界面处的固态反应。它表明,GDC和Ag修饰可以通过阻止溶胶态反应和纳米颗粒烧结来增强氧的电稳定性。结果表明,GDC对电池性能有负面影响,而Ag对电池性能有正面影响,这表明增强YSZ-LSCF的电导率是改善电池性能的关键。此外,具有YSZ-SFM / GDC的电池已应用于CH4辅助的SOEC工艺(CH4-SOEC)中,可以显着降低耗电量。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2020年第8期|5554-5564|共11页
  • 作者

  • 作者单位

    Tsinghua Univ Dept Energy & Power Engn State Key Lab Power Syst Beijing 100084 Peoples R China|Tsinghua Innovat Ctr Dongguan Dongguan 523808 Guangdong Peoples R China;

    Tsinghua Innovat Ctr Dongguan Dongguan 523808 Guangdong Peoples R China|Suzhou Huatsing Power Co Ltd Suzhou 210094 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solid oxide cell; Oxygen electrode; Infiltration; Stability; CH4 assisted electrolysis;

    机译:固体氧化物电池;氧电极浸润;稳定性;CH4辅助电解;
  • 入库时间 2022-08-18 05:21:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号