首页> 外文期刊>International journal of hydrogen energy >Graphene and silicene nanodomains in a ultra-thin SiC layer for water splitting and hydrogen storage. A first principle study
【24h】

Graphene and silicene nanodomains in a ultra-thin SiC layer for water splitting and hydrogen storage. A first principle study

机译:超薄SiC层中的石墨烯和硅烯纳米域,用于水分解和储氢。首要原理研究

获取原文
获取原文并翻译 | 示例
       

摘要

First-principles calculations within the density functional theory (DFT) have been addressed to investigate the energetic stability, electronic and optical properties of graphene and silicene nanodomains in a SiC single layer (h-SiC). We observe that graphene domains form a planar structure and give rise to an occupied and an empty electronic levels inside the h-SiC band gap, leading the h-SiC to present a strong optical absorption peak in the visible region. On the other hand, when a silicene nanodomain is present the system is no longer planar and present a corrugated structure similar to the silicene structure. The silicene nanodomain introduce three empty electronic levels within the band gap, leading the h-SiC with optical absorption in the visible region. These results show that a graphene nanodomain in h-SiC is appropriate for optical devices, while silicene nanodomains form almost sp(3) quantum dots. This finding suggest that the graphene and silicene nanodomains in a SiC single layer increase the possibility to use h-SiC to produce new electronic and optical devices as well for energy storage by hydrogen adsorption. In fact, we study the H-2 and O-2 adsorption on the pristine system and on the nanodomains, we observe that the presence of the nanodomais increase the binding energies of the adsorbed molecules. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:已经讨论了密度泛函理论(DFT)中的第一性原理计算,以研究SiC单层(h-SiC)中石墨烯和硅烯纳米域的能量稳定性,电子和光学性质。我们观察到石墨烯域形成平面结构,并在h-SiC带隙内引起电子能级的占据和空位,导致h-SiC在可见光区呈现出很强的光吸收峰。另一方面,当存在硅纳米域时,该系统不再是平面的,并且呈现出与硅结构相似的波纹结构。硅纳米域在带隙内引入了三个空的电子能级,从而在可见光区带动了h-SiC的光吸收。这些结果表明,h-SiC中的石墨烯纳米域适用于光学器件,而硅纳米域形成几乎sp(3)量子点。这一发现表明,SiC单层中的石墨烯和硅烯纳米域增加了使用h-SiC来生产新的电子和光学器件以及通过氢吸附进行能量存储的可能性。实际上,我们研究了H-2和O-2在原始系统和纳米域上的吸附,我们观察到纳米亚胺的存在会增加吸附分子的结合能。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号