首页> 外文期刊>International journal of hydrogen energy >In situ observation of hydride nucleation and selective growth in magnesium thin-films with environmental transmission electron microscopy
【24h】

In situ observation of hydride nucleation and selective growth in magnesium thin-films with environmental transmission electron microscopy

机译:环境透射电镜原位观察镁薄膜中氢化物成核和选择性生长

获取原文
获取原文并翻译 | 示例
       

摘要

The comprehension of solute-induced phase transformations is crucial in a variety of research fields such as catalysis, memory switching or energy storage. We study solute induced phase transformations on the model magnesium-hydrogen (Mg-H) system which provides high lattice expansion during the phase transformations. In situ precipitation and growth of MgH2 is analyzed in an environmental transmission electron microscope (ETEM), combining electron energy loss spectroscopy (EELS) and various imaging techniques. It is found that the Mg-hydride (MgH2) formation proceeds through the formation of nanocrystals that are separated by low-angle grain boundaries. This change in the microstructure is easily detectable in the ETEM and allows studying the growth of the hydride phase. The EELS results confirm the direct match between the nanocrystalline microstructure and the MgH2 phase. We attribute this microstructural change to large strains and stresses between the matrix and the MgH2 created during the transformation process. Half-spherical as well as finger-like regions of MgH2 is observed in the film. Combing the ETEM studies with finite element method simulations on the local stress distribution in the lamella suggests an influence of local stresses on the growth behavior. As the FEM simulations reveal, the local stress distribution depends on the shape of the hydrided region. This includes stresses that occur after the hydride nucleation and during the growth of the hydride. Hydrogen diffusion is suggested to be fast along the Pd/MgH2 interphase as well as along the high angle grain boundaries and less fast in low angle grain boundaries in MgH2, in contrast to the very slow diffusion in the MgH2 grains. This paper highlights the interdependency of the hydride growth and its self-created local stress fields in an in situ ETEM study. We consider these results not to be limited to the Mg-H system, but being of more general nature. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:溶质诱导的相变的理解在催化,记忆转换或能量存储等各种研究领域中至关重要。我们研究了在模型镁氢(Mg-H)系统上溶质诱导的相变,该系统在相变过程中提供了高晶格膨胀。 MgH2的原位沉淀和生长在环境透射电子显微镜(ETEM)中进行了分析,结合了电子能量损失谱(EELS)和各种成像技术。发现氢化镁(MgH 2)的形成通过被低角度晶界分开的纳米晶体的形成而进行。微观结构的这种变化很容易在ETEM中检测到,并允许研究氢化物相的生长。 EELS结果证实了纳米晶体微结构与MgH2相之间的直接匹配。我们将这种微观结构变化归因于基质与转化过程中产生的MgH2之间的大应变和应力。在薄膜中观察到MgH2的半球形和手指状区域。将ETEM研究与有限元方法模拟对薄片中的局部应力分布相结合,表明了局部应力对生长行为的影响。正如FEM仿真所揭示的那样,局部应力分布取决于氢化区域的形状。这包括在氢化物成核后和氢化物生长期间产生的应力。与MgH2晶粒中非常缓慢的扩散相反,氢在Pd / MgH2相间以及在高角度晶界中扩散较快,而在MgH2的低角度晶界中扩散较慢。本文在原位ETEM研究中强调了氢化物生长及其自身产生的局部应力场的相互依赖性。我们认为这些结果不限于Mg-H系统,而是更一般的性质。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号