首页> 外文期刊>International journal of hydrogen energy >Small hydrogen storage tank filled with 2LiBH_4-MgH_2 nanoconfined in activated carbon: Reaction mechanisms and performances
【24h】

Small hydrogen storage tank filled with 2LiBH_4-MgH_2 nanoconfined in activated carbon: Reaction mechanisms and performances

机译:填充有活性炭纳米限制的2LiBH_4-MgH_2的小型储氢罐:反应机理和性能

获取原文
获取原文并翻译 | 示例
       

摘要

De/rehydrogenation performances and reaction pathways of nanoconfined 2LiBH(4)-MgH2 into activated carbon (AC) packed in small hydrogen storage tank are proposed for the first time. Total and material storage capacities upon five hydrogen release and uptake cycles are 3.56-4.55 and 2.03-3.28 wt % H-2, respectively. Inferior hydrogen content to theoretical capacity (material capacity of 5.7 wt % H-2) is due to partial dehydrogenation during sample preparation and incomplete decomposition of LiBH4 as well as the formation of thermally stable Li2B22H12 upon cycling. Two-step dehydrogenation of MgH2 and LiBH4 to produce Mg and MgB2+LiH, respectively is found at all positions in the tank. For rehydrogenation, reversibility of MgH2 and LiBH4 proceeds via different reaction mechanisms. Although isothermal condition (T-set = 350 degrees C) and controlled pressure range (e.g., 30-40 bar H-2 for hydrogenation) are applied, temperature gradient inside the tank and poor hydrogen diffusion through hydride bed, especially in the sample bulk are detected. This results in alteration of de/rehydrogenation pathways of hydrides at different positions in the tank. Thus, further development of hydrogen storage tank based 2LiBH(4)-MgH2 nanoconfined in AC includes the improvement of thermal conductivity of materials and temperature control system as well as hydrogen permeability. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:首次提出了纳米约束的2LiBH(4)-MgH2进入装在小型储氢罐中的活性炭(AC)中的脱氢/再氢化性能和反应途径。在五个氢释放和吸收循环时的总储存容量和材料储存容量分别为3.56-4.55和2.03-3.28 wt%H-2。氢含量低于理论容量(材料容量为5.7 wt%H-2)是由于样品制备过程中发生部分脱氢和LiBH4的不完全分解以及循环时形成热稳定的Li2B22H12。 MgH2和LiBH4的两步脱氢分别生成Mg和MgB2 + LiH。对于再氢化,MgH2和LiBH4的可逆性通过不同的反应机理进行。尽管采用了等温条件(T设定= 350摄氏度)和受控压力范围(例如,氢化反应使用30-40 bar H-2),但储罐内部的温度梯度和通过氢化物床的氢扩散不良,尤其是在样品体积中被检测到。这导致槽中不同位置的氢化物的脱氢/再氢化途径发生改变。因此,基于交流电的2LiBH(4)-MgH2纳米储氢罐的进一步发展包括改善材料的导热性和温度控制系统以及氢的渗透性。 (C)2019氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2019年第21期|10752-10762|共11页
  • 作者单位

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand;

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand;

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand;

    Synchrotron Light Res Inst Publ Org, Mech Syst Div, Nakhon Ratchasima 30000, Thailand;

    Suranaree Univ Technol, Inst Sci, Sch Chem, Nakhon Ratchasima 30000, Thailand|Suranaree Univ Technol, Ctr Excellent Adv Funct Mat CoE AFM, Nakhon Ratchasima 30000, Thailand|Suranaree Univ, Sch Chem, Res Network NANOTEC SUT Adv Nanomat & Characteriz, Nakhon Ratchasima 30000, Thailand;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solid state hydrogen storage; Hydride composite; Chemisorption; Melt infiltration; Reaction mechanisms;

    机译:固态储氢氢化物复合物化学吸附熔体渗透反应机理;
  • 入库时间 2022-08-18 04:19:50

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号