首页> 外文期刊>International journal of hydrogen energy >Three-dimensional multiphysics model of a planar solid oxide fuel cell using computational fluid dynamics approach
【24h】

Three-dimensional multiphysics model of a planar solid oxide fuel cell using computational fluid dynamics approach

机译:平面固体氧化物燃料电池的三维多物理场模型,采用计算流体动力学方法

获取原文
获取原文并翻译 | 示例
       

摘要

A multiphysics model of a planar solid oxide fuel cell has been developed based on computational fluid dynamics approach and validated by cell level experiment in the present article. The three-dimensional model of multiphysics nature includes the full-field computational fluid dynamics solutions coupled with the electrochemical model for a planar type of solid oxide fuel cell developed in the Technical University of Denmark. The software COMSOL Multiphysics was used to solve the equations in three-dimensions. With the employment of appropriate boundary conditions at respective parts and through solving the fluid dynamics, heat transfer and electrochemical equations, pressure, velocity, temperature and current density fields were established for a given cell voltage. It is shown that the spatial variation of mole fractions of species are determined by the rate of electrochemical reactions, while that of hydrogen reaching maximum at locations beneath the interconnect ribs and that of oxygen reducing to the fractional level of 2.3 x 10(-4) within the active cathode layer due to the mass flow resistance. The variation of temperature increases as the flow proceeds along the main flow direction due to the electrochemical reactions as well as the ohmic and activation overpotentials. It was shown that the exchange current density field for the anode is determined by the temperature distribution caused by the highly exothermic process of formation of water, and also by the partial pressures of hydrogen and water. It was further established that the variation of over potential at the anode/electrolyte interface are justified by the mechanisms of irreversible ohmic and activation losses taking place within the cell, a high electronic conductivity in certain locations and the relatively higher ohmic overpotential in respective regions. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:基于计算流体动力学方法,建立了平面固体氧化物燃料电池的多物理场模型,并在本文中进行了单元级实验验证。多物理场性质的三维模型包括在丹麦技术大学开发的用于平面型固体氧化物燃料电池的全场计算流体动力学解决方案以及电化学模型。使用COMSOL Multiphysics软件求解三维方程。通过在各个部分采用适当的边界条件并通过求解流体动力学,传热和电化学方程式,为给定的电池电压建立了压力,速度,温度和电流密度场。结果表明,物质的摩尔分数的空间变化取决于电化学反应的速率,而氢在互连肋下方的位置达到最大值,而氧的分数下降至2.3 x 10(-4)的分数水平。由于质量流动阻力,在有源阴极层中的电流会减小。由于电化学反应以及欧姆和活化超电势,当流体沿着主流方向流动时,温度变化增加。结果表明,阳极的交换电流密度场由水的高度放热过程引起的温度分布以及氢和水的分压所决定。进一步确定的是,阳极/电解质界面上的过电势的变化通过电池内发生不可逆的欧姆和激活损耗,某些位置的高电子电导率以及各个区域中相对较高的欧姆过电势的机理来证明。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

  • 来源
    《International journal of hydrogen energy》 |2018年第42期|19730-19748|共19页
  • 作者

    Celik A. N.;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:06:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号