首页> 外文期刊>International journal of hydrogen energy >Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells
【24h】

Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells

机译:碳微球成孔剂促成的多孔载体微观结构对质子传导可逆固体氧化物电池性能的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Proton-conducting reversible solid oxide cells (PC-RSOCs) have attracted extensive attention due to their high efficiencies as energy conversion devices. Generally, the performance of the cell is affected to a certain extent by the microstructure of the electrodes, which is closely related to the gas diffusion and surface reaction processes. Herein, different contents of the carbon microspheres (CMSs) are used as the pore formers to control the microstructure of the hydrogen electrode. Experimental results reveal that the porosity, line shrinkage, and thermal expansion coefficient of the hydrogen electrode support simultaneously increase with the CMS content. The support with 30 wt% CMS presents high porosity (39.27 vol%) with uniform-size pores. Subsequently, the corresponding single cells were fabricated successfully, particularly, the cell with 30 wt% CMS exhibiting the best electrochemical performance in both fuel cell (0.46 W cm(-2) at 700 degrees C) and electrolysis cell (1.41 A cm(-2) at 1.3 V and 700 degrees C) operational modes. Further results demonstrated the highest performance was attributed primarily to the maximal three-phase boundary length, which mainly originates from the high porosity and unique microstructure of the hydrogen electrode. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
机译:质子传导可逆固体氧化物电池(PC-RSOC)由于其作为能量转换装置的高效率而受到广泛关注。通常,电池的性能在一定程度上受到电极微观结构的影响,这与气体扩散和表面反应过程密切相关。在此,使用不同含量的碳微球(CMS)作为成孔剂以控制氢电极的微结构。实验结果表明,氢电极载体的孔隙率,线收缩率和热膨胀系数均随CMS含量的增加而增加。具有30 wt%CMS的载体呈现出高孔隙率(39.27体积%)和均匀大小的孔。随后,成功地制造了相应的单电池,特别是具有30 wt%CMS的电池在燃料电池(0.46 W cm(-2)在700摄氏度)和电解电池(1.41 A cm(-)中均表现出最佳的电化学性能2)在1.3 V和700摄氏度下)运行模式。进一步的结果表明,最高的性能主要归因于最大的三相边界长度,这主要源于氢电极的高孔隙率和独特的微观结构。 (C)2018氢能出版物有限公司。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号