...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Hamilton-Jacobi-Bellman equations and dynamic programming for power-maximizing relaxation of radiation
【24h】

Hamilton-Jacobi-Bellman equations and dynamic programming for power-maximizing relaxation of radiation

机译:Hamilton-Jacobi-Bellman方程和动态规划,可最大程度地释放辐射

获取原文
获取原文并翻译 | 示例
           

摘要

We treat simulation and power optimization of nonlinear, steady and dynamical generators of mechanical energy, in particular radiation engines. In dynamical cases, associated with downgrading of resources in time, real work is a cumulative effect obtained from a nonlinear fluid, set of engines, and an infinite bath. Dynamical state equations describe resources upgrading or downgrading in terms of temperature, work output and process controls. Recent formulae for converter's efficiency and generated power serve to derive Hamilton-Jacobi equations for the trajectory optimization. The relaxation curve of typical nonlinear system is non-exponential. Power extre-mization algorithms in the form of Hamilton-Jacobi-Bellman equations (HJB equations) lead to work limits and generalized availabilities. Optimal performance functions depend on end states and the problem Hamiltonian, h. As an example of limiting work from radiation, a generalized exergy flux of radiation fluid is estimated in terms of finite rates quantified by Hamiltonian h. In many systems governing HJB equations cannot be solved analytically. Then the use of discrete counterparts of these equations and numerical methods is recommended. Algorithms of discrete dynamic programming (DP) are particularly effective as they lead directly to work limits and generalized availabilities. Convergence of these algorithms to solutions of HJB equations is discussed. A Lagrange multiplier 1 helps to solve numerical algorithms of dynamic programming by eliminating the duration constraint. In analytical discrete schemes, the Legendre transformation is a significant tool leading to the original work function.
机译:我们处理机械能的非线性,稳定和动态生成器的仿真和功率优化,尤其是辐射引擎。在动态情况下,与时间上的资源降级相关联,实际工作是从非线性流体,发动机组和无限浴中获得的累积效应。动态状态方程式描述了温度,工作输出和过程控制方面的资源升级或降级。转换器效率和产生功率的最新公式有助于推导汉密尔顿-雅各比方程,用于轨迹优化。典型的非线性系统的弛豫曲线是非指数的。汉密尔顿-雅各比-贝尔曼方程(HJB方程)形式的功率极端化算法导致工作极限和广义可用性。最佳性能函数取决于最终状态和问题哈密顿量h。作为限制辐射功的一个例子,根据哈密顿量h量化的有限速率,可以估算出辐射流体的广义本能通量。在许多系统中,无法解析地解决控制HJB方程的问题。然后,建议使用这些方程式和数值方法的离散对应项。离散动态规划(DP)的算法特别有效,因为它们直接导致工作限制和广义可用性。讨论了这些算法对HJB方程解的收敛性。拉格朗日乘法器1通过消除持续时间约束来帮助解决动态规划的数值算法。在分析离散方案中,Legendre变换是导致原始功函数的重要工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号