首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical investigation and sensitivity analysis of manifold microchannel coolers
【24h】

Numerical investigation and sensitivity analysis of manifold microchannel coolers

机译:歧管微通道冷却器的数值研究和灵敏度分析

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents a numerical investigation of a single-phase manifold microchannel cooler (MMC) heat exchanger demonstrating a reduction in fluid pressure drop while improving chip-temperature uniformity. This modeling work includes the entire manifold length with multiple microchannels, whereas previous models have only focused on individual microchannels, ignoring complex manifold effects. Computational Fluid Dynamic (CFD) models were used to identify the impact of varying both the manifold and microchannel fin and channel dimensions, and a sensitivity analysis was performed with respect to system pressure drop, rise in device temperature, and thermal uniformity. This modeling work demonstrated both large velocity gradients between microchannels, as well as fluidic swirling in the microchannels that significantly improved the heat transfer coefficient. These results are absent from unit-cell type models. The results of the full MMC model showed significantly improved chip-temperature uniformity when large (approximately 10X) differences in velocity occurred between microchannels. The simulations also showed that, for equivalent thermal performance, the MMC design resulted in a 97% reduction in system pressure drop when compared to an equivalent straight microchannel cooler. Finally, the numerical pressure drop results were compared to a simpler, one-dimensional approximation based on the Hagen-Poiseuille equation. While under-predicting total pressure drop, the analytical equation does capture prevailing trends of the effects of channel dimensions on the pressure drop and can be used for rapid evaluation of numerous tradeoffs from a system perspective.
机译:本文对单相歧管微通道冷却器(MMC)热交换器进行了数值研究,证明了流体压降的降低,同时提高了芯片温度的均匀性。该建模工作包括具有多个微通道的整个歧管长度,而先前的模型仅关注单个微通道,而忽略了复杂的歧管效应。计算流体动力学(CFD)模型用于确定歧管和微通道翅片和通道尺寸的变化所产生的影响,并对系统压降,器件温度升高和热均匀性进行了敏感性分析。该建模工作证明了微通道之间的大速度梯度,以及微通道中的流体涡流,显着提高了传热系数。这些结果在单元格类型模型中是不存在的。完整的MMC模型的结果显示,当微通道之间的速度差异较大(大约10倍)时,芯片温度均匀性得到了显着改善。仿真还表明,与同等的直式微通道冷却器相比,MMC的设计在同等的热性能下,使系统压降降低了97%。最后,将数值压降结果与基于Hagen-Poiseuille方程的更简单的一维近似进行比较。尽管总压降预测不足,但该分析方程式的确捕获了通道尺寸对压降影响的主流趋势,并且可用于从系统角度快速评估众多折衷方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号