...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES
【24h】

Effects of free-stream turbulence on high pressure turbine blade heat transfer predicted by structured and unstructured LES

机译:自由流湍流对结构化和非结构化LES预测的高压涡轮叶片传热的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent developments and demonstrations for the prediction of turbulent flows around blades point to Large Eddy Simulations (LES) as a very promising tool. Indeed and despite the fact that this numerical method still requires modeling and intense computing effort compared to Reynolds Average Navier-Stokes (RANS), this fully unsteady simulation technique provides valuable information on the turbulent flow otherwise inaccessible. Theoretical limits and scales of wall bounded flows are now well mastered in simple cases but complex industrial applications usually introduce unknowns and mechanisms that are difficult to apprehend beforehand especially with LES which is usually computationally intensive and bounded to code scalability, mesh quality, modeling performances and computer power. In this specific context, few studies directly address the use of fully structured versus unstructured, implicit versus explicit flow solvers and their respective impact for LES modeling of complex wall bounded flows. To partly address these important issues, two dedicated structured and unstructured computational solvers are applied and assessed by comparing the predictions of the heat transfer around the experimental high pressure turbine blade profile cascade of Arts et al. [6]. First, both LES predictions are compared to RANS modeling with a particular interest for the accuracy /cost ratio and improvement of the physical phenom ena around the blade. LES's are then detailed and further investigated to assess their ability to reproduce the inlet turbulence effect on heat transfer and the development of the transitioning boundary layer around the blade. Quantitative comparisons against experimental findings show excellent agreement especially on the pressure side of the profile. Detailed analysis of the flow predictions provided by both the structured and unstructured solvers underline the importance of long stream-wise streaky structures responsible for the augmentation of the heat transfer and leading to the transition of the suction-side boundary layer.
机译:预测叶片周围湍流的最新发展和论证表明,大涡模拟(LES)是非常有前途的工具。确实,尽管与雷诺平均Navier-Stokes(RANS)相比,此数值方法仍需要建模和大量计算工作,但这种完全不稳定的模拟技术可提供有关湍流的有价值的信息,否则将无法获得。现在,在简单情况下可以很好地掌握壁垒流动的理论极限和尺度,但是复杂的工业应用通常会引入未知和难以事先理解的机制,尤其是LES,LES通常计算量大,并且受限于代码可伸缩性,网格质量,建模性能和电脑电源。在这种特定情况下,很少有研究直接涉及完全结构化与非结构化,隐式与显式流动求解器的使用及其各自对复杂壁面有限流的LES建模的影响。为了部分解决这些重要问题,应用了两个专用的结构化和非结构化计算求解器,并通过比较Arts等人的实验高压涡轮叶片轮廓级联周围的传热预测来进行评估。 [6]。首先,将两个LES预测与RANS建模进行比较,并特别关注精度/成本比和叶片周围物理现象的改善。然后对LES进行了详细的研究,并对其进行了进一步的研究,以评估它们对入口湍流产生的传热和叶片周围过渡边界层发展的影响。与实验结果的定量比较显示出极好的一致性,尤其是在压力曲线方面。由结构化和非结构化求解器提供的流量预测的详细分析强调了长流向条纹结构的重要性,该结构负责传热的增加并导致吸力侧边界层的过渡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号