...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical studies on dispersion of thermal waves
【24h】

Numerical studies on dispersion of thermal waves

机译:热波扩散的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

Heat may transport as waves under ultrafast heat pulse conditions. In this paper, our numerical analyses considering typical thermal wave modes, i.e. Cattaneo-Vernotte (CV), dual-phase-lagging (DPL), and ther-momass (TM), disclose that dispersion may occur during the heat propagation processes like water, sound, and light waves. The unified implicit finite difference method for the Fourier, CV, DPL, and TM models was adopted to analyze the heat propagation process in solids. The validity of this numerical method for the Fourier, CV, DPL and TM models was confirmed. The dispersion of thermal waves was observed in their propagation processes for the first time. As the thermal waves moving forward, many peaks appear in the rear of the thermal waves relative to the propagation direction. The underlying mechanism for the dispersion of the thermal waves is that they can travel faster in the points with higher temperature considering the temperature dependence of the relaxation time. For the CV-waves and DPL-waves, the origins of the dispersion are both due to the inertia term of heat flux to time (τ_q ðq/ðt). For the TM-waves, the origins are due to the inertia term of heat flux to time, inertia term of temperature to time, and inertia term of heat flux to space in the TM model, and effects of the inertia term of temperature to space on the dispersion can be neglected, where the inertia term to space comes from the nonlocal effects. The dispersion of the TM-waves is mainly dominated by the inertia term of heat flux to time. In the TM model, the characteristic time τ_(TM) decreases with the increase of temperature, and therefore the dispersion will appear in the propagation process of the TM-wave. For actual materials, if considering that τ_q decreases with the temperature increasing, the dispersion of the CV-wave and DPL-wave will also appear under the appropriate amplitude of heat flux pulse, relaxation times τ_q and τ_T. The increase of the amplitude of heat flux pulse and the decrease of the initial temperature both can enhance the dispersion of the TM-wave. The increase of the amplitude of heat flux pulse and the relaxation time τ_q can both enhance the dispersion of the CV-wave and DPL-wave, while the increase of the relaxation time τ_T wilI weaken the dispersion of the DPL-wave.
机译:在超快的热脉冲条件下,热量可能以波的形式传输。在本文中,我们在考虑典型的热波模式(即Cattaneo-Vernotte(CV),双相滞后(DPL)和ther-momass(TM))的数值分析中发现,在像水一样的热传播过程中可能会发生分散,声波和光波。采用傅里叶,CV,DPL和TM模型的统一隐式有限差分方法来分析固体中的传热过程。证实了该数值方法对傅立叶,CV,DPL和TM模型的有效性。首次在传播过程中观察到热波的弥散。随着热波向前移动,相对于传播方向,许多峰值出现在热波的后部。考虑到弛豫时间的温度依赖性,热波散布的基本机理是它们可以在较高温度的点上更快地传播。对于CV波和DPL波,色散的起因都是由于热通量对时间的惯性项(τ_qðq/ðt)所致。对于TM波,其起源是由于TM模型中热通量对时间的惯性项,温度对时间的惯性项,热通量对空间的惯性项以及温度对空间的惯性项的影响所致。可以忽略色散的影响,其中空间的惯性项来自非局部效应。 TM波的色散主要受热通量对时间的惯性项支配。在TM模型中,特征时间τ_(TM)随着温度的升高而减小,因此在TM波的传播过程中会出现色散。对于实际材料,如果考虑到随温度升高τ_q减小,则在适当的热通量脉冲幅度,弛豫时间τ_q和τ_T下,CV波和DPL波的色散也会出现。热通量脉冲幅度的增加和初始温度的降低都可以增强TM波的色散。热通量脉冲幅度的增加和弛豫时间τ_q都可以增强CV波和DPL波的弥散,而弛豫时间τ_T的增加会削弱DPL波的弥散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号