...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations
【24h】

Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations

机译:双尺度3-D方法用于模拟纤维绝缘体中的辐射传热

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a dual-scale computationally-affordable 3-D method is developed to simulate the transfer of radiative heat through fibrous media comprised of fibers with different diameters and orientations. The simulations start by generating a virtual fibrous material with specified microstructural properties and then compute the radiative properties of each fiber (i.e., effective phase function, as well as scattering and absorption coefficients) in the structure using the Mie Scattering theory. Considering independent scattering formulations for our fibrous media (media with high porosities), the radiative properties of the insulation material are computed by summing up the radiative properties of each individual fiber, after transforming the phase function values from the fiber's local 3-D coordinates system to a fixed global coordinates system. The radiative properties of the media are then used in the Radiative Transfer Equation (RTE) equation, an integro-differential equation obtained for computing the attenuation and augmentation of an InfraRed ray's energy as it travels through a fibrous medium. Using the Discrete Ordi-nate Method (DOM), the RTE is then discretized into a system of twenty four coupled partial differential equations and solved numerically using the FlexPDE program to obtain the rate of heat transfer through the entire thickness of the media. Studying media with different microstructural properties, it was quantitatively shown that increasing solid volume fraction, thickness, or fibers' through-plane orientation increases the rate of heat transfer through insulation. With regard to the role of fiber diameter, it was found that there exists a fiber diameter for which radiation heat transfer through a fibrous media is minimal, ranging between 3 and 10 μm for glass fibers operating in a temperature range of about 340-750 K.
机译:在这项工作中,开发了一种可计算的双尺度3-D方法,以模拟辐射热通过纤维介质的传递,该纤维介质包含不同直径和方向的纤维。模拟通过生成具有特定微结构特性的虚拟纤维材料开始,然后使用Mie散射理论计算结构中每根纤维的辐射特性(即有效相函数以及散射系数和吸收系数)。考虑到我们的纤维介质(具有高孔隙率的介质)的独立散射公式,在对纤维的局部3-D坐标系中的相函数值进行变换后,通过对每根纤维的辐射特性求和,可以计算出绝缘材料的辐射特性。到固定的全局坐标系。然后,将介质的辐射特性用于辐射传递方程(RTE)方程,该方程是一个积分微分方程,用于计算红外线在纤维介质中传播时能量的衰减和增大。然后使用离散有序方法(DOM)将RTE离散化为由二十四个耦合的偏微分方程组成的系统,并使用FlexPDE程序对其进行数值求解,以获得在整个介质厚度上的传热速率。对具有不同微结构特性的介质进行了研究,定量地表明,增加固体体积分数,厚度或纤维的平面取向会增加隔热材料的传热速率。关于纤维直径的作用,发现存在这样一种纤维直径,其通过纤维介质的辐射热传递最小,对于在约340-750 K的温度范围内运行的玻璃纤维而言,辐射热的传递范围为3至10μm。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号