首页> 外文期刊>International Journal of Heat and Mass Transfer >Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions
【24h】

Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions

机译:大气条件下挥发性流体的浮力-热毛细对流

获取原文
获取原文并翻译 | 示例
           

摘要

Convection in a layer of fluid with a free surface due to a combination of thermocapillary stresses and buoyancy is one of the classic problems of fluid mechanics. Although extensively studied, it is still not fully understood. In particular, neither the effect of phase change nor the thermal boundary conditions at the liquid-vapor interface have been properly described. These two intimately related issues have a significant impact on the stability of the flow and transitions between different convective patterns. The objective of this paper is to develop and validate a comprehensive numerical model which properly describes both heat transfer and phase change at the liquid-vapor interface, as well as the transport of heat and vapor in the gas layer, which is ignored by the vast majority of theoretical studies with minimal justification. We present a numerical investigation of convection in a long cell filled with a volatile fluid and air, and investigate the changes in convective patterns due to with changes in the applied horizontal temperature gradient. We also explore how variations in the wetting properties of the fluid and lateral confinement (three-dimensionality) affect the flow. While the numerical results have been found to be in general agreement with existing experimental observations, we have also discovered an unexpected phenomenon: a region of evaporation near the cold wall and a region of condensation near the hot wall.
机译:由于热毛细应力和浮力的结合,具有自由表面的流体层中的对流是流体力学的经典问题之一。尽管进行了广泛研究,但仍未完全了解。特别地,没有适当地描述相变的影响或在液-气界面处的热边界条件。这两个密切相关的问题对流动的稳定性以及不同对流方式之间的转换具有重大影响。本文的目的是开发和验证一个综合的数值模型,该模型可以正确描述液-气界面处的传热和相变,以及气体层中的热和蒸汽的传输,这被广泛的人所忽略。大多数理论研究都没有什么根据。我们对充满挥发性流体和空气的长电池中的对流进行了数值研究,并研究了由于所施加的水平温度梯度的变化而导致的对流模式的变化。我们还探讨了流体的润湿特性和侧向约束(三维)的变化如何影响流动。虽然发现数值结果与现有的实验观察结果基本一致,但我们还发现了一个出乎意料的现象:冷壁附近的蒸发区域和热壁附近的冷凝区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号