首页> 外文期刊>International Journal of Heat and Mass Transfer >Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al_2O_3
【24h】

Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al_2O_3

机译:缝隙大小,温度和泵送压力对在线空间原子层沉积Al_2O_3的流体动力学和化学动力学的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Low throughput is a major limitation for industrial level atomic layer deposition (ALD) applications. Spatial ALD is regarded as a promising solution to this issue. With numerical simulations, this paper studies an in-line spatial ALD reactor by investigating the effects of gap size, temperature, and pumping pressure on the flow and surface chemical deposition processes in Al_2O_3 ALD. The precursor intermixing is a critical issue in spatial ALD system design, and it is highly dependent on the flow and material distributions. By numerical studies, it's found that bigger gap, e.g., 2 mm, results in less precursor intermixing, but generates slightly lower saturated deposition rate. Wafer temperature is shown as a significant factor in both flow and surface deposition processes. Higher temperature accelerates the diffusive mass transport, which largely contributes to the precursor intermixing. On the other hand, higher temperature increases film deposition rate. Well-maintained pumping pressure is beneficial to decrease the precursor intermixing level, while its effect on the chemical process is shown very weak. It is revealed that the time scale of in-line spatial ALD cycle is in tens of milliseconds, i.e., ~15 ms. Considering that the in-line spatial ALD is a continuous process without purging step, the ALD cycle time is greatly shortened, and the overall throughput is shown as high as ~4 nm/s, compared to several nm/min in traditional ALD.
机译:低吞吐量是工业级原子层沉积(ALD)应用程序的主要限制。空间ALD被认为是解决该问题的有前途的解决方案。通过数值模拟,本文通过研究间隙尺寸,温度和泵送压力对Al_2O_3 ALD中流动和表面化学沉积过程的影响,研究了在线空间ALD反应器。前驱体混合是空间ALD系统设计中的关键问题,它高度依赖于流量和材料分布。通过数值研究发现,较大的间隙(例如2 mm)导致较少的前驱体混合,但产生的饱和沉积速率略低。晶圆温度显示为流动和表面沉积过程中的重要因素。较高的温度加速了扩散物质的传输,这在很大程度上促进了前体的混合。另一方面,较高的温度增加了膜沉积速率。保持良好的抽气压力有利于降低前驱体的混合水平,但对化学过程的影响却表现得很弱。结果表明,在线空间ALD循环的时间尺度为数十毫秒,即〜15 ms。考虑到在线空间ALD是无需吹扫步骤的连续过程,ALD循环时间大大缩短,与传统ALD的几nm / min相比,总吞吐率高达4 nm / s。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号