...
首页> 外文期刊>International Journal of Heat and Mass Transfer >A saturated-interface-volume phase change model for simulating flow boiling
【24h】

A saturated-interface-volume phase change model for simulating flow boiling

机译:模拟流动沸腾的饱和界面体积相变模型

获取原文
获取原文并翻译 | 示例

摘要

High-fidelity simulation of flow boiling in microchannels remains a challenging problem, but the increasing interest in applications of microscale two-phase transport highlights its importance. In this paper, a volume of fluid (VOF)-based flow boiling model is proposed with features that enable cost-effective simulation of two-phase flow and heat transfer in realistic geometries. The vapor and liquid phases are distinguished using a color function which represents the local volume fraction of the tracked phase. Mass conservation is satisfied by solving the transport equations for both phases with a finite-volume approach. In order to predict phase change at the liquid-vapor interface, evaporative heat and mass source terms are calculated using a novel, saturated-interface-volume phase change model. This phase change model is formulated to anchor the interfacial temperature at saturation within each iteration, and thereby acts as a robust constant-temperature boundary condition. Unlike other available phase-change models, the source terms are coupled with the local temperature explicitly; therefore, numerical oscillations around the interface temperature are not observed during iterations within a time step, which reduces the numerical cost. In addition, the reference frame is set to move with the vapor slug to artificially increase the local velocity magnitude in the thin liquid film region in the relative frame. This reduces the influence of numerical errors resulting from calculation of the surface tension force, and thus suppresses the development of spurious currents. As a result, non-uniform meshes may be used which can efficiently resolve high-aspect-ratio geometries and flow features. The overall numerical expense is significantly reduced. The proposed saturated-interface-volume model is first validated against a one-dimensional Stefan problem, and then used to simulate the growth of a vapor bubble flowing in a heated, 2D axisymmetric microchannel. The bubble motion, bubble growth rate, liquid film thickness, and local heat transfer coefficient along the wall are compared against previous numerical studies. A three-dimensional flow boiling problem is studied to demonstrate the cost effectiveness of the present approach and to highlight the transport mechanisms it can reveal in more complex domains.
机译:在微通道中对流沸腾进行高保真模拟仍然是一个具有挑战性的问题,但是对微型两相传输应用的兴趣日益增加,凸显了其重要性。本文提出了一种基于流体体积(VOF)的流动沸腾模型,该模型具有能够在实际几何形状中经济高效地模拟两相流动和传热的功能。气相和液相使用颜色函数来区分,该函数表示被跟踪相的局部体积分数。通过用有限体积方法求解两个相的输运方程,可以满足质量守恒。为了预测液-气界面处的相变,使用新颖的饱和界面-体积相变模型来计算蒸发热和质量源项。制定此相变模型以在每次迭代内将界面温度固定在饱和状态,从而充当稳健的恒温边界条件。与其他可用的相变模型不同,源项明确地与局部温度耦合。因此,在一个时间步内的迭代过程中,未观察到界面温度附近的数值振荡,从而降低了数值成本。另外,参考系被设定为与蒸气团一起移动,以人为地增加相对系中的液体薄膜区域中的局部速度大小。这减少了由于计算表面张力而产生的数值误差的影响,并因此抑制了寄生电流的产生。结果,可以使用可以有效地解决高纵横比的几何形状和流动特征的非均匀网格。总的数字费用大大减少了。首先针对一维Stefan问题验证了提出的饱和界面体积模型,然后将其用于模拟在加热的2D轴对称微通道中流动的气泡的增长。将气泡运动,气泡生长速率,液膜厚度和沿壁的局部传热系数与以前的数值研究进行了比较。对三维流动沸腾问题进行了研究,以证明本方法的成本效益并强调其可以在更复杂的领域中揭示的运输机制。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer 》 |2016年第2期| 945-956| 共12页
  • 作者单位

    Cooling Technologies Research Center, an NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;

    Cooling Technologies Research Center, an NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;

    Cooling Technologies Research Center, an NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flow boiling; MicroChannel; Two phase; Phase change; VOF simulation;

    机译:流沸腾;微通道;两相相变VOF模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号