首页> 外文会议>ASME international technical conference and exhibition on packaging and integration of electronic and photonic microsystems >A Cost-Effective Modeling Approach for Simulating Phase Change and Flow Boiling in Microchannels
【24h】

A Cost-Effective Modeling Approach for Simulating Phase Change and Flow Boiling in Microchannels

机译:一种有效的微通道相变和流沸腾建模方法

获取原文

摘要

High-fidelity simulation of flow boiling in microchannels remains a challenging problem, but the increasing interest in applications of microscale two-phase transport highlight its importance. In this paper, a volume of fluid (VOF)-based flow boiling model is proposed with computational expense-saving features that enable cost-effective simulation of two-phase flow and heat transfer in realistic geometries. The vapor and liquid phases are distinguished using a color function which represents the local volume fraction of the tracked phase. Mass conservation is satisfied by solving the transport equations for both phases with a finite-volume approach. In order to predict phase change at the liquid-vapor interface, evaporative heat and mass source terms are calculated using a novel, saturated-interface-volume phase change model that fixes the interface at the saturation temperature at each time step to achieve stability. Numerical oscillation of the evaporation source terms is thus eliminated and a non-iterative time advancement scheme can be adopted to reduce computational cost. The reference frame is set to move with the vapor slug to artificially increase the local velocity magnitude in the thin liquid film region in the relative frame, which reduces the influence of numerical errors resulting from calculation of the surface tension force, and thus suppresses the development of spurious currents. This allows use of non-uniform meshes that can efficiently resolve high-aspect-ratio geometries and flow features and significantly reduces the overall numerical expense. The proposed model is used to simulate the growth of a vapor bubble in a heated 2D axisymmetric microchannel. The bubble motion, bubble growth rate, liquid film thickness, and local heat transfer coefficient along the wall are compared against previous numerical studies.
机译:在微通道中对流沸腾进行高保真模拟仍然是一个具有挑战性的问题,但是对微型两相传输应用的兴趣日益增加,凸显了其重要性。本文提出了一种基于体积(VOF)的流动沸腾模型,该模型具有节省计算费用的功能,可以在实际几何形状中经济高效地模拟两相流动和传热。气相和液相使用颜色函数进行区分,该函数表示被跟踪相的局部体积分数。通过用有限体积方法求解两相的输运方程,可以满足质量守恒的要求。为了预测液-气界面处的相变,使用新颖的饱和界面-体积相变模型计算蒸发热和质量源项,该模型将界面固定在每个时间步的饱和温度下,以实现稳定性。因此消除了蒸发源项的数值振荡,并且可以采用非迭代时间提前方案以减少计算成本。将参考框架设置为与蒸气团块一起移动,以人为地增加相对框架中液体薄膜区域中的局部速度大小,从而减少了由于计算表面张力而产生的数值误差的影响,从而抑制了显影杂散电流。这允许使用非均匀网格,这些非均匀网格可以有效地解决高纵横比的几何形状和流动特征,并显着减少总体数值开销。所提出的模型用于模拟加热的二维轴对称微通道中蒸汽气泡的增长。将气泡运动,气泡生长速率,液膜厚度和沿壁的局部传热系数与以前的数值研究进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号