首页> 外文期刊>International Journal of Heat and Mass Transfer >The characterization of a low-profile channel-confined jet for targeted hot-spot cooling in microfluidic applications
【24h】

The characterization of a low-profile channel-confined jet for targeted hot-spot cooling in microfluidic applications

机译:低轮廓通道受限射流的特性,用于微流体应用中的目标热点冷却

获取原文
获取原文并翻译 | 示例
       

摘要

Photonics Integrated Circuits (PICs) are the backbone of the optical-fiber networks that enable high-speed communication on a global scale. Contemporary devices contain laser-bars (~μm length-scale) which must be controlled within ±0.1 K, and are capable of generating heat fluxes ~1 kW/m~2. This represents one of the highest heat fluxes found in nature or engineering applications, and the thermal challenge places a limitation on the density of laser-bar arrays on an individual chip. Chip-integrated μfluidic cooling has been proposed for the thermal management of next-generation PICs to create more energy efficient devices, capable of greater data throughput. Jet impingements are of interest as the primary heat exchangers in this system due to the large heat transfer rates that can be achieved. The objective of this work is to generate a novel, low profile jet impingement within an individual channel suitable for targeting hot-spots in a densely packed circuit, at the low Reynolds numbers prevalent in micro-fluidic applications (Re < 500). To this end, two experiments were performed to non-invasively observe the velocity field and local heat transfer in a square miniature channel containing a curved orifice-plate to manipulate the fluid flow. A range of Reynolds numbers (channel Re = 100-200) and obstruction opening area ratios (0 = 0.2-0.5) were investigated through Particle-Image Velocimetry and infrared thermography of a Joule-heated foil. The velocimetry data showed that the curved orifice-plate geometry successfully generated an inclined jet within the channel, and maximum improvements in the area-averaged heat transfer coefficient of 495% (relative to a channel containing no obstruction) were measured. The heat transfer data showed Nu ~ Re~(0.59) scaling, similar to that of a micro-fluidic array of normally impinging jets, and this physical relationship is beneficial in the design and modeling of μfluidic cooling systems. The findings illustrate the impact of a channel confined jet on spatial heat transport, and demonstrate the potential for controlled heat transfer enhancement using unconventional obstructions within laminar channel flows.
机译:光子集成电路(PIC)是光纤网络的骨干,可在全球范围内实现高速通信。现代设备包含的激光棒(〜μm长度标尺)必须控制在±0.1 K之内,并且能够产生〜1 kW / m〜2的热通量。这代表了自然界或工程应用中发现的最高热通量之一,并且热挑战对单个芯片上的激光棒阵列的密度提出了限制。已提出芯片集成的微流体冷却技术用于下一代PIC的热管理,以创建更节能的设备,并能够提供更大的数据吞吐量。由于可以实现大的传热速率,因此射流冲击作为该系统中的主要热交换器非常重要。这项工作的目的是在单个通道内产生一种新颖的,低剖面的射流冲击,该射流适合于以微流体应用中普遍存在的低雷诺数(Re <500),以密集的回路中的热点为目标。为此,进行了两个实验,以非侵入性的方式观察速度场和局部热传递,该运动在包含弯曲孔板的正方形微型通道中进行,以控制流体流动。通过粒子图像测速和焦耳加热箔的红外热像图研究了雷诺数范围(通道Re = 100-200)和阻塞开口面积比(0 = 0.2-0.5)。测速数据表明,弯曲的孔板几何形状成功地在通道内生成了倾斜射流,并且测得面积平均传热系数达到了495%(相对于不包含障碍物的通道),从而获得了最大的改善。传热数据显示Nu〜Re〜(0.59)标度,类似于正常撞击射流的微流体阵列,这种物理关系有利于微流体冷却系统的设计和建模。这些发现说明了通道受限射流对空间传热的影响,并证明了使用层流通道流中的非常规障碍物来控制传热的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号