首页> 外文期刊>International Journal of Heat and Mass Transfer >Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (Ⅰ): Characterizations of flow boiling heat transfer
【24h】

Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (Ⅰ): Characterizations of flow boiling heat transfer

机译:使用辅助通道和多个微喷嘴增强微通道中的沸腾(Ⅰ):沸腾传热的表征

获取原文
获取原文并翻译 | 示例
       

摘要

Flow boiling in parallel microchannels can be dramatically enhanced through inducing self-excited and self-sustained high frequency two-phase oscillations as demonstrated in our previous studies using a two-nozzle microchannel configuration. Two-phase mixing induced by the rapid bubble collapse is shown to be the major enhancement mechanism. However, in the two-nozzle configuration microchannels, the mixing effect is limited to the downstream of the microchannels, meaning that only half length of the entire microchannel is functionalized as designated. In this study, a four-nozzle microchannel configuration is developed with an aim at extending the highly desirable mixing effect to the entire channel. Flow boiling in the four-nozzle configuration microchannels is experimentally studied with deionized water and the mass flux ranging from 120 kg/m~2 s to 600 kg/m~2 s. The onset of nucleate boiling temperature is considerably reduced by ~14% because of more nucleation sites created by the multiple nozzles. Equally important, the improved microchannel configuration successfully extends the mixing to the entire channel as validated by the enhanced heat transfer rate and visualization study. Compared to the previous two-nozzle configuration, the overall heat transfer coefficient (HTC) is significantly improved primarily owing to the enhanced nucleate boiling. For example, the peak overall HTC of 262 kW/m~2 K is achieved at a mass flux of 150 kg/m~2 s, accounting for ~83.7% enhancement. Additionally, the peak effective HTC reaches 97.6 kW/m~2 K, accounting for ~67% enhancement.
机译:平行微通道中的沸腾现象可以通过诱导自激和自我维持的高频两相振荡而得到显着增强,如我们先前使用双喷嘴微通道配置的研究所证明的那样。快速气泡破裂引起的两相混合被证明是主要的增强机理。但是,在双喷嘴配置微通道中,混合效果仅限于微通道的下游,这意味着整个微通道的只有一半长度按指定功能进行了功能化。在这项研究中,开发了四喷嘴微通道配置,旨在将非常理想的混合效果扩展到整个通道。用去离子水对四喷嘴结构微通道中的沸腾进行了实验研究,质量通量为120 kg / m〜2 s至600 kg / m〜2 s。由于多个喷嘴产生了更多的成核位置,因此成核沸腾温度的开始显着降低了约14%。同样重要的是,改进的微通道配置成功地将混合扩展到了整个通道,这一点已通过增强的传热速率和可视化研究得到验证。与以前的两喷嘴配置相比,主要是由于增强了核沸腾,因此显着提高了总传热系数(HTC)。例如,在150 kg / m〜2 s的质量通量下,可达到262 kW / m〜2 K的总HTC峰值,约提高了83.7%。此外,峰值有效HTC达到97.6 kW / m〜2 K,增加了约67%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号