首页> 外文期刊>International Journal of Heat and Mass Transfer >Critical heat flux and the dryout of liquid film in vertical two-phase annular flow
【24h】

Critical heat flux and the dryout of liquid film in vertical two-phase annular flow

机译:临界热通量和垂直两相环形流动中液体膜的干沟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The entire liquid-film dryout process in a vertical two-phase annular flow is characterized experimentally, from inception to completion. Experiments are conducted using saturated R245fa at high vapor qualities in a heated rectangular channel with a hydraulic diameter of 18 mm and an aspect ratio of 1/3. The walls of the test section are made of glass coated with fluorine-doped tin oxide (FTO). Heat fluxes up to 50 kW/m~2 are generated at the inner surface of the window by passing an electrical current through the FTO coating. Instantaneous pressure and temperature in the test section, temperature on the outer wall of the test section, liquid-film thickness, and high-speed videos are recorded simultaneously during the dryout events. In addition, the state (wet or dry) of the heated surface is measured using a non-invasive laser reflectance technique at high sampling rate (2000 Hz) and over long periods of time (> 1000 s). The laser reflectance measurement is used to calculate the time-averaged dry fraction, f_(dry), which is the fraction of time that the wall is dry during intermittent cycles of dryout and rewet. Data show that cyclic dryout starts before the critical heat flux (CHF) is reached. The dryout heat flux (DHF), which marks the onset of dryout, is typically 90% of the CHF, except at very high quality (x > 0.95), where it can be as low as 50% of CHF. For all the investigated mass fluxes, CHF, where the heat transfer coefficient peaks, occurs consistently at f_(dry) ≈ 0.05. Further insight into the liquid-film behavior at the onset of dryout is obtained by combining analyses of high-speed videos, time-resolved liquid-film thickness signals, and statistics about the duration of and time between dryout events. The rewetting process is driven by disturbance waves. In the wake of disturbance waves, the liquid film is almost stationary. Calculations of the characteristic time it takes for this stationary film to evaporate predict well the characteristic time during dryout events measured with the laser reflectance method.
机译:垂直两相环形流动中的整个液体膜干涸过程实验表征,从初始到完成。使用饱和R245FA在加热的矩形通道中的高蒸汽质量下进行实验,液体直径为18mm,纵横比为1/3。试验部分的壁由涂有氟掺杂氧化锡(FTO)的玻璃制成。通过通过FTO涂层通过电流在窗的内表面处产生高达50kW / m〜2的热通量。试验部分中的瞬时压力和温度,在干燥事件期间同时记录试验部分,液体膜厚度和高速视频的温度。另外,在高采样速率(2000Hz)和长时间(> 1000秒)中,使用非侵入式激光反射技术测量加热表面的状态(湿或干)。激光反射率测量用于计算时间平均的干馏分F_(干燥),这是在干扰和重缝间歇性循环期间壁在间歇循环期间干燥的时间的一部分。数据显示在达到临界热通量(CHF)之前开始循环干扰。除了干扰开始的干扰热通量(DHF)通常是90%的CHF,除了非常高质量(x> 0.95),在那里它可以低至50%的CHF。对于所有研究的质量助熔剂,CHF,其中传热系数峰在F_(干燥)≈0.05中发生。通过组合高速视频,时间分辨的液体膜厚度信号和干预事件之间的持续时间和时间统计来获得干扰发作时的液体膜行为的进一步了解。重新润湿过程是由扰动波驱动的。在扰动波之后,液体薄膜几乎是静止的。计算该固定膜在用激光反射方法测量的干扰事件期间的特征时间所需的特性时间计算。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第10期|121487.1-121487.21|共21页
  • 作者单位

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Solar Energy Laboratory (SEL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA;

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Heat Transfer Research Group HTRC Department of Mechanical Engineering Sao Carlos School of Engineering (EESC) University of Sao Paulo (USP) 400 Trabalhador Sao-Carlense Ave. Parque Arnold Schimidt Sao Carlos 13566-590 SP Brazil;

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Solar Energy Laboratory (SEL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA;

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Solar Energy Laboratory (SEL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA;

    Heat Transfer Research Group HTRC Department of Mechanical Engineering Sao Carlos School of Engineering (EESC) University of Sao Paulo (USP) 400 Trabalhador Sao-Carlense Ave. Parque Arnold Schimidt Sao Carlos 13566-590 SP Brazil;

    Naval Nuclear Laboratory West Mifflin PO Box 79 PA 15122-0079 USA;

    Naval Nuclear Laboratory West Mifflin PO Box 79 PA 15122-0079 USA;

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Solar Energy Laboratory (SEL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA;

    Multiphase Flow Visualization and Analysis Laboratory (MFVAL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA Solar Energy Laboratory (SEL) University of Wisconsin-Madison 1500 Engineering Drive Madison WI 53706-1609 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dryout; Critical heat flux; Heat transfer coefficient; Two-phase annular flow; Flow boiling;

    机译:干沟;临界热量;传热系数;两相环状;流沸腾;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号