首页> 外文期刊>International Journal of Heat and Mass Transfer >Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes
【24h】

Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes

机译:不同触发模式下锂离子电池模块热失控传播特性的研究

获取原文
获取原文并翻译 | 示例
       

摘要

Rapid thermal runaway propagation (TRP) in lithium-ion batteries (LIBs) can cause safety accidents such as explosions or fires in the systems employing these batteries. Hence, the TR is a critical issue for the safety of LIBs. In this study, the TRP behavior of LIB modules under three typical triggering modes (heating, nail penetration, and overcharge) is investigated and compared. First, the three triggering modes are used to induce TR on a modified cell. Then, the TR and TRP models for each trigger mode are established, and the model parameters are identified based on experiments. Third, the TRP characteristics of battery modules under the three triggering modes are investigated. Finally, the energy flow distribution is determined during the TRP. The main conclusions are as follows: (1) The differences in TRP time and triggering temperature are obvious under different trigger modes in the early stage of TRP, but these differences are gradually eliminated in the later TRP stage. Therefore, TR trigger mode selection is critical during the initial stage of TRP. Specifically, the nail penetration trigger has the shortest trigger time while the heating trigger has the best comprehensive performance, allowing for good LIB testing operability and incurring low costs. (2) The energy flow distribution shows that more than 60% of TR energy is used for battery self-heating and more than 26% of the energy is emitted during cell material explosions. Therefore, TRP can be inhibited or delayed by improving the structure of the battery pack to reduce the temperature of the eruption or expel the ejecta to prevent explosions.
机译:锂离子电池(LIBS)中的快速热失控传播(TRP)可导致使用这些电池的系统中的爆炸或火灾等安全事故。因此,TR是LIBS安全的关键问题。在这项研究中,研究了三种典型触发模式下的Lib模块的TRP行为(加热,指甲渗透和过充电)并进行比较。首先,三种触发模式用于在修改的单元格上诱导TR。然后,建立每个触发模式的TR和TRP模型,并且基于实验识别模型参数。第三,研究了三种触发模式下电池模块的TRP特性。最后,在TRP期间确定能量流分布。主要结论如下:(1)TRP时间和触发温度的差异在TRP的早期阶段的不同触发模式下显而易见,但在后期TRP阶段逐渐消除这些差异。因此,TR触发模式选择在TRP的初始阶段是至关重要的。具体而言,指甲渗透触发具有最短的触发时间,而加热触发器具有最佳的全面性能,允许良好的Lib测试可操作性和产生的低成本。 (2)能量流量分布表明,超过60%的TR能量用于电池自加热,在细胞材料爆炸期间发出超过26%的能量。因此,可以通过改善电池组的结构来抑制或延迟TRP以降低喷发的温度或驱逐喷射物以防止爆炸。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2021年第6期|121080.1-121080.15|共15页
  • 作者单位

    College of Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093 China;

    College of Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093 China;

    State Key Laboratory of Automotive Safety and Energy Tsinglma University Beijing 100084 China China People's Police University LangFang 065000 China;

    College of Mechanical Engineering University of Shanghai for Science and Technology Shanghai 200093 China State Key Laboratory of Automotive Safety and Energy Tsinglma University Beijing 100084 China;

    State Key Laboratory of Automotive Safety and Energy Tsinglma University Beijing 100084 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Lithium-ion battery; Thermal runaway triggering mode; Thermal runaway propagation; Thermal runaway model; Energy flow;

    机译:锂离子电池;热失控触发模式;热失控繁殖;热失控模型;能量流;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号