首页> 外文期刊>International Journal of Heat and Mass Transfer >An exponentially accurate spectral reconstruction technique for the single-phase one-dimensional Stefan problem with constant coefficients
【24h】

An exponentially accurate spectral reconstruction technique for the single-phase one-dimensional Stefan problem with constant coefficients

机译:恒定系数单相一维梯形问题的指数准确的光谱重构技术

获取原文
获取原文并翻译 | 示例
       

摘要

The Stefan problem represents a large class of physical phenomena ranging from heat diffusion during phase change to the shoreline movement problem. The numerical solution of the Stefan problem requires special attention to the accuracy of the scheme to restrict the propagation of error and consequently avoid non-physical solutions or an increased computational cost. We propose a novel fixed grid scheme using pseudospectral methods, referred to as the spectral reconstruction technique, to obtain an accurate solution of the one-dimensional single-phase Stefan problem with constant coefficients. The technique requires the solution in the spatial or the temporal direction to be decomposed into an infinitely-differentiable smooth function and a step function centered at the interface. The infinitely-differentiable smooth function is treated as a sum of Chebyshev polynomials, while a weighted Heaviside step function is used to impose the Stefan condition at the interface exactly. The weighting function is expressed in a weak form using the interface jump conditions. In this article, we use the spectral reconstruction technique in the spatial direction and two schemes for the temporal direction. At first, the Crank-Nicolson method is used for temporal discretization and then the spectral reconstruction technique. Three instances of the one dimensional Stefan problem, where the solution varies within one of the phases only, are studied: the Stefan melting problem, the Frank sphere solidification problem, and the variable flux shoreline movement problem. We present quantitative comparisons of the computed interface location with existing literature for the melting and the shoreline movement problem. The convergence of the numerical method is clarified via presenting the errors in the maximum norm for the spectral discretization scheme. Between the two temporal schemes, the Crank-Nicolson time integration is easier to implement and requires less memory, but yields algebraic convergence along with non-physical oscillations during interface grid crossing. The spectral reconstruction temporal scheme achieves exponential convergence in the maximum norm while requiring variable grid time integration.
机译:斯特凡问题代表了大类从相变到海岸线运动问题的热扩散范围的物理现象。 Stefan问题的数值解决方案需要特别注意方案的准确性,以限制误差的传播,从而避免非物理解决方案或增加的计算成本。我们提出了一种使用假谱方法的新型固定网格方案,称为光谱重建技术,以获得具有恒定系数的一维单相斯特凡问题的精确解决方案。该技术要求在空间或时间方向上的溶液分解成无限微弱的光滑功能,并且在界面处为中心的阶梯函数。无限微分的光滑功能被视为Chebyshev多项式的总和,而加权沉重的步骤函数用于精确地施加界面处的斯特凡条件。使用界面跳转条件以弱形式表示加权函数。在本文中,我们在空间方向上使用光谱重建技术和用于时间方向的两种方案。首先,曲柄-Nicolson方法用于时间离散化,然后是光谱重建技术。三维斯特凡问题的三个实例,其中解决方案仅在其中一个阶段内变化,在其中一个阶段,是:斯特凡熔点问题,坦率球体凝固问题,以及可变磁通围流运动问题。我们将计算的界面位置的定量比较与现有文献进行熔化和海岸线运动问题。通过在光谱离散化方案中呈现最大规范中的误差来阐明数值方法的收敛。在两个时间方案之间,曲柄-Nicolson时间集成更容易实现并且需要更少的内存,但在接口网格过桥期间产生代数收敛以及非物理振荡。光谱重建时间方案在需要可变网格时间集成的同时实现最大规范的指数收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号