首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical Study of Flow and Heat Transfer Performance of 3D-Printed Polymer-Based Battery Thermal Management
【24h】

Numerical Study of Flow and Heat Transfer Performance of 3D-Printed Polymer-Based Battery Thermal Management

机译:基于3D印刷聚合物基电池热管理的流动和传热性能的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

The thermal performance of a novel battery thermal management system produced by additive manufacturing is investigated through simulations. The performance of 3D-printed polymer-based battery thermal management systems is investigated for heat-managing high power density Li-ion batteries for electric vehicles and stationary applications. The manufacturing of the battery packs through 3D-printing allows for greater complexity and novelty in the design of the coolant flow domains, in order to achieve a high heat transfer coefficient by the coolant. Having a high heat transfer coefficient at the coolant side allows the use of lower conductive materials in the body of the battery pack. The proposed system takes advantage of 3D-printing technology to embedded heat fins in the cooling channel. The simulations consider various discharging rates from 2C to a high of 3C to take the battery from a 100% to 20% state of charge in the discharging process. For the charging rates 2C and 3C, the maximum battery temperature within the pack reached 22.8°C and 24.5°C, respectively. However, the maximum temperature difference across a six-battery pack reached no more than 1.5°C and 4.5°C, respectively. A maximum temperature difference achieved by the proposed system shows the ability of the 3D-printed polymer-based system to achieve the required performance and demonstrates the potential of such systems that are equipped with the advantage of additive manufacturing.
机译:通过仿真研究了通过模拟制造的新型电池热管理系统的热性能。研究了3D印刷的基于聚合物的电池热管理系统的性能,用于热管理用于电动车辆和静止应用的高功率密度锂离子电池。通过3D印刷的电池组的制造允许在冷却剂流动域的设计中进行更大的复杂性和新颖性,以便通过冷却剂实现高热传递系数。在冷却剂侧具有高传热系数允许在电池组的主体中使用下导电材料。所提出的系统利用3D打印技术来嵌入冷却通道中的热翅片。模拟将来自2C的各种放电速率从3C的电量视为放电过程中的100%至20%的电荷状态。对于充电速率2C和3C,包装内的最大电池温度分别达到22.8°C和24.5°C。然而,六电池组上的最大温差分别达到了1.5°C和4.5°C。所提出的系统实现的最大温度差异显示了3D印刷的基于聚合物的系统实现所需性能的能力,并证明了这种系统的潜力,该系统配备了添加剂制造的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号