首页> 外文期刊>International Journal of Heat and Mass Transfer >Lattice Boltzmann simulation of forced convection melting of a composite phase change material with heat dissipation through an open-ended channel
【24h】

Lattice Boltzmann simulation of forced convection melting of a composite phase change material with heat dissipation through an open-ended channel

机译:通过开放式通道进行散热散热,晶格Boltzmann模拟复合相变材料的强制对流熔化

获取原文
获取原文并翻译 | 示例
       

摘要

This paper performs a numerical analysis of time-dependent forced convection heat transfer in an open-ended straight channel filled with a metal structure and paraffin as a phase change material (PCM). The unsteady two-dimensional governing equations, based on the Darcy-Brinkmann-Forchheimer (DBF) model and the two-energy transport equations (i.e. local thermal non-equilibrium, LTNE) at the representative elementary volume (REV) scale in their dimensionless forms, have been simulated using the thermal single relaxation time (T-SRT) Lattice Boltzmann Method (LBM) with three distribution functions to handle the fluid, and temperatures of the fluid and solid phases. Effects of Reynolds number (100 ≤ Re ≤ 600), Eckert number (0 ≤ Ec ≤ 10), porosity (0.1 ≤ ε ≤ 0.8) on dynamic and thermal fields, entropy generation, and energy and exergy efficiencies of the considered system are examined. The relevance of these parameters is highlighted and discussed during the charging (melting) and discharging (solidifying) processes. Interestingly, it can be stated that small porosities promptly accelerate these two processes due to high thermal conductivity of the metal foam/PCM composite, and improve energy and exergy efficiencies of the system, whatever Re for the very low porosity values (0.4 and 0.6). In addition, streamlines, isotherms and melt front (phase field) are exhibited for this parameters range. Based on the findings obtained, it is concluded that, in the context of laminar forced convection melting of a composite PCM with heat dissipation in a porous PCM-filled channel, 1) there is a critical Reynolds number for which the storage energy is optimal and whose quality is improved using both the porosity and the effects of viscous dissipation, and 2) the proposed approach's potential and the in-house code flexibility implemented are demonstrated.
机译:本文对填充有金属结构和石蜡作为相变材料(PCM)的开口直通道中的时间依赖性强制对流传热的数值分析。基于Darcy-Brinkmann-Forchheimer(DBF)模型的不稳定的二维控制方程和代表基本体积(Rev)规模的两能量传输方程(即局部热非平衡,LTNE)以无量纲形式已经使用热单松弛时间(T-SRT)晶格Boltzmann方法(LBM)进行模拟,具有三个分布函数来处理流体,以及流体和固相的温度。雷诺数(100≤Re≤600)的效果,检查动态和热场的孔隙率(0≤2EC≤10),孔隙率(0.1≤ε≤0.8),熵生成,熵生成和所考虑的系统的能量和漏电效率。在充电(熔化)和放电(凝固)过程期间突出显示这些参数的相关性并讨论。有趣的是,由于金属泡沫/ PCM复合材料的高导热率,小孔隙率迅速加速这两种过程,提高了系统的能量和漏洞,无论是非常低的孔隙率值(0.4和0.6) 。另外,对于该参数范围,表现出简化,等温线和熔体前部(相位场)。基于所获得的发现,得出结论,在层状PCM在多孔PCM填充通道中具有散热的层压迫使转向熔点,1)储存能量是最佳的临界雷诺数。使用粘性散热的孔隙度和效果改善了其质量,而且2)所提出的方法的潜力和实施内部代码的灵活性。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2020年第6期|119606.1-119606.20|共20页
  • 作者单位

    Ecole Nationale d'Ingenieurs de Monastir Universite de Monastir Laboratoire d'Etudes des Systemes Thermiques et Energetiques (LESTE) Tunisia Rue Ibn Eljazza 5019 Monastir Tunisia;

    Ecole Nationale d'Ingenieurs de Monastir Universite de Monastir Laboratoire d'Etudes des Systemes Thermiques et Energetiques (LESTE) Tunisia Rue Ibn Eljazza 5019 Monastir Tunisia;

    Univ. Artois Univ. Lille IMT & Yncrea-HEI Laboratoire Genie Civil & geo-Environnement (ULR 4515) Technoparc Futura F-62400 Bethune France;

    Ecole Nationale d'Ingenieurs de Monastir Universite de Monastir Laboratoire d'Etudes des Systemes Thermiques et Energetiques (LESTE) Tunisia Rue Ibn Eljazza 5019 Monastir Tunisia;

    Yncrea-HEI Univ. Artois Univ. Lille & IMT LGCgE (ULR 4515) 13 Rue de Toul F-59000 Lille France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Transient forced convection; Porous media filled-channel; Phase change material (PCM); Viscous dissipation; Local thermal non-equilibrium (LTNE); Lattice Boltzmann method (LBM);

    机译:瞬态强制对流;多孔介质填充通道;相变材料(PCM);粘性耗散;局部热非平衡(LTNE);格子Boltzmann方法(LBM);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号