首页> 外文期刊>International Journal of Heat and Mass Transfer >Numerical simulation of entropy generation due to natural convection heat transfer using Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamics (ISPH) model
【24h】

Numerical simulation of entropy generation due to natural convection heat transfer using Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamics (ISPH) model

机译:自然对流换热产生熵的数值模拟,采用无核无导数(KDF)不可压缩平滑粒子流体动力学(ISPH)模型

获取原文
获取原文并翻译 | 示例
           

摘要

This paper develops and applies a Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydro-dynamics (ISPH) model for analysis of entropy generation and heat transfer in fluid-structure coupling problems. A modified high order Laplacian operator is applied for the treatment of pressure-velocity coupling (Poisson's equation), while an explicit third-order TVD Runge-Kutta scheme is used for time integration of the momentum, energy and displacement equations. To improve the consistency and stability of the model, a new particle regularization technique based on the particle shifting is also introduced for simulating free-surface flows. The developed KDF-ISPH model is validated and evaluated for a series of challenging benchmark cases, including, dam break, stretching water drop, rotating square patch of fluid, and natural convection in square cavity. Accuracy and applicability of the method are further validated by analyzing entropy generation due to the natural convection heat transfer in three well-known geometries including: square cavity with hot obstacle inside, C-shaped enclosure, and square enclosure containing a pair of hot and cold horizontal pipes (heat exchanger). The results are found to be in good agreement with available numerical and experimental data. The accuracy of the developed KDF-ISPH with new Laplacian operator, for use in prediction of fluid flow and heat transfer characteristics is also proven. Finally, by combining the cosine and signal functions, a new high order smoothing kernel is constructed. The evaluation of this new kernel for the propagation of shock wave in 1D tube demonstrates better global stability and consistency properties compared to two frequently used SPH kernels (i.e. cubic and quintic spline functions).
机译:本文开发并应用了无核导数(KDF)不可压缩的平滑粒子流体动力学(ISPH)模型,用于分析流固耦合问题中的熵产生和热传递。修改后的高阶Laplacian算子用于压力-速度耦合(泊松方程)的处理,而显式三阶TVD Runge-Kutta方案用于动量,能量和位移方程的时间积分。为了提高模型的一致性和稳定性,还引入了一种基于粒子移位的新粒子正则化技术来模拟自由表面流。所开发的KDF-ISPH模型已针对一系列具有挑战性的基准案例进行了验证和评估,这些案例包括溃坝,拉伸水滴,旋转方形流体斑块以及方腔内自然对流。该方法的准确性和适用性通过分析自然对流传热在三个众所周知的几何结构中产生的熵而得到进一步验证,这些几何结构包括:内部有热障碍的方腔,C形外壳和包含一对冷热的方形外壳水平管(热交换器)。发现结果与可用的数值和实验数据高度吻合。还证明了开发的带有新拉普拉斯算子的KDF-ISPH的准确性,可用于预测流体流量和传热特性。最后,通过结合余弦和信号函数,构造了一个新的高阶平滑核。与两个常用的SPH内核(即三次样条函数和五次样条函数)相比,此新内核在1D管中传播冲击波的评估显示出更好的整体稳定性和一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号