首页> 外文期刊>International Journal of Heat and Mass Transfer >A fully-coupled thermal-stress model to predict the behavior of the casting-chill interface in an engine block sand casting process
【24h】

A fully-coupled thermal-stress model to predict the behavior of the casting-chill interface in an engine block sand casting process

机译:一个完全耦合的热应力模型,用于预测机体砂型铸造过程中的铸-冷界面行为

获取原文
获取原文并翻译 | 示例
       

摘要

The sole use of light alloys in the production of automotive parts might not be the best strategy to reduce the emission of CO_2, as for this purpose, one should consider the life-cycle of the final part. One way to address this issue is to increase the in-service life of the components by modifying the manufacturing process. In the first phase of this study, we used a different chill format in the bonded sand casting process for the production of engine blocks, and it was concluded that this method might increase the fatigue life of the component by refining the microstructure. However, to better understand the dynamics of the casting-chill interface, the development of a thermal-stress model was necessary. This paper summarizes the methodology used to develop a thermal-stress model that predicts the evolution of temperature within the casting and the chill and the evolution of gap and/or pressure at the casting-chill interface. The work identified that the gap size between the H13 chill and the casting at the bottom of the chill in the main bearing bulkhead could reach a maximum of 0.17 mm. Additionally, it was found that the heat transfer coefficient decreased from a peak value of 2500 W m~(-2) K~(-1) to 500 W m~(-2) K~(-1) at a gap size of 0.2 mm. The numerical analysis uncovered a couple of important factors that play a major role in the development of the gap at the interface including the thermal contraction/deformation of the casting; the thermal expansion/deformation of the chill; the constitutive behavior of the casting; the constitutive behavior of the bonded sand mold cap; and, the geometry of the casting-chill interface. Overall, the modeling results show that the interface gap/pressure dynamics are complicated and play a critical role in governing heat transport across the casting-chill interface.
机译:在汽车零件的生产中仅使用轻合金可能不是减少CO_2排放的最佳策略,为此,应考虑最终零件的生命周期。解决此问题的一种方法是通过修改制造过程来延长组件的使用寿命。在本研究的第一阶段,我们在粘结砂型铸造工艺中使用了不同的冷却方式来生产发动机缸体,并得出结论认为,该方法可能会通过细化组织来延长部件的疲劳寿命。但是,为了更好地了解铸-冷界面的动力学特性,有必要开发一个热应力模型。本文总结了用于开发热应力模型的方法,该模型可预测铸件和冷风中的温度变化以及铸件-冷风界面处的间隙和/或压力的变化。这项工作确定了H13冷却液和主轴承隔板冷却液底部铸件之间的间隙尺寸最大可以达到0.17 mm。另外,发现传热系数在2500μm的间隙尺寸下从峰值2500Wm〜(-2)K〜(-1)降低到500Wm〜(-2)K〜(-1)。 0.2毫米数值分析发现了一些重要的因素,这些因素在界面间隙的发展中起着重要作用,包括铸件的热收缩/变形。冷风的热膨胀/变形;铸件的本构行为;粘结砂型帽的本构行为;以及铸造-冷却界面的几何形状。总体而言,建模结果表明,界面间隙/压力动力学非常复杂,并且在控制铸件-冷却剂界面的传热过程中起着至关重要的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号