首页> 外文期刊>International Journal of Heat and Mass Transfer >The stagnation point heat transfer under partially-developed submerged jets
【24h】

The stagnation point heat transfer under partially-developed submerged jets

机译:在部分开发的水下射流下的停滞点传热

获取原文
获取原文并翻译 | 示例
           

摘要

Laminar jet impingement is an efficient method for heat transfer processes, though much of its hydrodynamics and the resulting convection are still not fully understood. As previously shown, stagnation-point heat transfer (Nu(0)) depends directly on the near-axis radial acceleration (A(0)) varying strongly with nozzle diameter (d), normalized nozzle length (L), normalized nozzle-to-plate spacing (H) and flow rate (Re), therefore a general expression is here developed for this key parameter.Through streamline-bending analysis it was identified that A(0) can be derived from the characteristics of the velocity profile arriving at the point of transition from free jet flight to stagnation flow (at z(w)). This analysis also led to the identification of the curvature of the velocity profile in the jet-core as the key factor dictating A(0), over a domain defined by a new characteristic scale R-c Examination of this curvature, resolves the apparently contradicting trends in the literature for A'(0)s dependence on flight distance. Moreover, it explains the occurrence of maximal heat transfer, when h is set around the potential core length.Building on the theoretical analysis, an explicit, yet universal, model for Nu(0) was developed in terms of nominal geometry and flow rate, rather than relying on the often-unknown arrival profile, and validated against simulations over a wide range of conditions (0.003 <= L, 0.001 <= H, 250 <= Re <= 2000). Therein, this model pin-points the location of the maximal heat transfer for any issuing profile, enabling efficient design and optimization.Finally, identifying z(w) as the stagnation-flow characteristic scale instead of d, enabled extension of an existing wall-approach model to include partially-developed profiles and longer flights. Then requiring the model's conformity to previous theory gave an explicit expression for z(w) - the lower-bound of H-Re still permitting heat transfer analysis assuming decoupling between the nozzle and wall flows. (C) 2019 Elsevier Ltd. All rights reserved.
机译:层流射流冲击是传热过程的一种有效方法,尽管其流体动力学和对流的许多方面仍未完全理解。如前所示,停滞点传热(Nu(0))直接取决于近轴径向加速度(A(0)),该值随喷嘴直径(d),归一化喷嘴长度(L),归一化喷嘴至板间距(H)和流率(Re),因此在此为该关键参数开发了一个通用表达式。通过流线弯曲分析,可以确定A(0)可以从到达的速度曲线的特征中得出从自由喷气飞行到停滞流动的过渡点(在z(w)处)。该分析还导致在由新特征标度Rc定义的域上,确定了射流芯速度曲线的曲率,这是决定A(0)的关键因素。对该曲率的检验解决了明显矛盾的趋势。 A'(0)依赖飞行距离的文献。此外,它解释了当将h设置在潜在的铁心长度附近时最大传热的发生情况。基于理论分析,针对标称几何形状和流量开发了Nu(0)的显式但通用的模型,而不是依靠通常不为人知的到达剖面,而是针对各种条件(0.003 <= L,0.001 <= H,250 <= Re <= 2000)的模拟进行了验证。在此模型中,该模型可精确指出任何发热量分布的最大传热位置,从而实现高效的设计和优化。最后,将z(w)识别为停滞流动特征尺度,而不是d,从而扩展了现有墙体-进近模型,包括部分开发的资料和更长的飞行时间。然后,要求模型与先前的理论相符,可以给出z(w)的明确表达式-H-Re的下限仍然允许进行热传递分析(假定喷嘴和壁流之间的去耦)。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号