首页> 外文期刊>International Journal of Heat and Mass Transfer >Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model
【24h】

Single droplet condensation in presence of non-condensable gas by a multi-component multi-phase thermal lattice Boltzmann model

机译:多组分多相热晶格玻尔兹曼模型在不凝性气体存在下的单滴凝结

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A multi-component multi-phase thermal lattice Boltzmann model considering vapor-liquid phase change is developed to study droplet condensation with the presence of non-condensable gas. Some tests, including an isolated droplet evaporation, are conducted to verify the capability of this model in simulating multi-component multi-phase flow with vapor-liquid phase change. After that, single droplet condensation considering non-condensable gas is investigated with different mass fraction of non-condensable component and contact angles. The results show that the influence of the non-condensable gas upon droplet condensation heat transfer is depended on the growth stage and the amount of the non-condensable gas. The mass transfer of vapor and non-condensable component will tend to an equilibrium state with the droplet condensation going. Furthermore, for different contact angles, the dynamic behavior of the contact line plays a critical role in the accumulation effect of the non-condensable component. And the heat transfer of droplet condensation is enhanced by the hydrophilic substrate rather than the hydrophobic substrate as expected, no matter adding the non-condensable component or not. In different conditions, the power law, which fits the droplet radius with time, is used to define the growth rate mathematically. (C) 2019 Elsevier Ltd. All rights reserved.
机译:建立了考虑汽-液相变化的多组分多相热晶格玻尔兹曼模型,研究了在不凝性气体存在下的液滴凝结现象。进行了一些测试,包括隔离的液滴蒸发,以验证该模型在模拟具有汽-液相变化的多组分多相流中的能力。之后,研究了具有不可凝气体质量分数和接触角的单滴凝结。结果表明,不可冷凝气体对液滴冷凝传热的影响取决于生长阶段和不可冷凝气体的数量。随着液滴的凝结,蒸气和不可凝结组分的传质趋于达到平衡状态。此外,对于不同的接触角,接触线的动态行为在不可冷凝组分的累积效应中起着至关重要的作用。并且,无论是否添加不可凝结成分,液滴凝结的传热都通过亲水性基材而不是疏水性基材来增强。在不同条件下,幂定律可随时间变化拟合液滴的半径,可用于数学定义生长速率。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号