...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Graetz problem for combined pressure-driven and electroosmotic flow in microchannels with distributed wall heat flux
【24h】

Graetz problem for combined pressure-driven and electroosmotic flow in microchannels with distributed wall heat flux

机译:具有分布壁热通量的微通道中压力驱动和电渗流的联合Graetz问题

获取原文
获取原文并翻译 | 示例
           

摘要

There has been a growing interest in the development of microchannel heat sinks deploying electrically modulated fluid flow in recent years. The efficient design of such devices requires heat transfer models that can account for complex distributions of heat generation in microelectronics. In this paper, expressions are obtained for temperature distribution and Nusselt number of thermally developing mixed electroosmotic and pressure-driven flow through circular/slit microchannels of axially non-uniform wall heat flux. The heating section is considered to be of a finite length in order to simulate a physically more realistic situation. Both the Joule heating and axial conduction effects are considered in the model. By comparing the results for linear, sinusoidal, and exponential distributions of the wall heat flux with the predictions of full numerical simulations, it is shown that the analytical solutions presented are accurate up to a Peclet number of 10. This threshold is demonstrated to be larger than the maximum Peclet number encountered in practical applications involving electroosmotic pumping mechanisms. After justification of the model, a parametric analysis is executed, revealing that the average Nusselt number is a decreasing function of the EDL thickness and pressure-driven velocity, irrespective of the wall heat flux distribution. Moreover, whereas a higher Joule heating rate is accompanied by a smaller value of the average Nusselt number for pure electroosmotic and pressure-assisted flows, the opposite is true in the presence of a significant back pressure. (C) 2018 Elsevier Ltd. All rights reserved.
机译:近年来,对开发采用电调制流体流的微通道散热器的兴趣日益增长。这种设备的有效设计需要传热模型,该模型可以解决微电子学中热量产生的复杂分布。在本文中,获得了通过轴向/非均匀壁热通量的圆形/狭缝微通道热膨胀混合电渗流和压力驱动流的温度分布和Nusselt数的表达式。为了模拟物理上更实际的情况,加热部分被认为是有限的长度。该模型同时考虑了焦耳热和轴向传导效应。通过将壁热通量的线性,正弦和指数分布结果与完整数值模拟的预测结果进行比较,结果表明,所提出的解析解决方案在Peclet数为10之前都是准确的。该阈值被证明较大超过涉及电渗泵浦机制的实际应用中遇到的最大Peclet数。对模型进行验证后,执行参数分析,发现平均Nusselt数是EDL厚度和压力驱动速度的递减函数,与壁热通量分布无关。此外,虽然较高的焦耳加热速率伴随着纯电渗流和压力辅助流的平均Nusselt值较小的值,但在存在明显的背压的情况下则相反。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号