首页> 外文期刊>International Journal of Heat and Mass Transfer >Uncertainty quantification in non-equilibrium molecular dynamics simulations of thermal transport
【24h】

Uncertainty quantification in non-equilibrium molecular dynamics simulations of thermal transport

机译:热传递的非平衡分子动力学模拟中的不确定度量化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Bulk thermal conductivity estimates based on predictions from non-equilibrium molecular dynamics (NEMD) using the so-called direct method are known to be severely under-predicted since finite simulation length-scales are unable to mimic bulk transport. Moreover, subjecting the system to a temperature gradient by means of thermostatting tends to impact phonon transport adversely. Additionally, NEMD predictions are tightly coupled with the choice of the inter-atomic potential and the underlying values associated with its parameters. In the case of silicon (Si), nominal estimates of the Stillinger-Weber (SW) potential parameters are largely based on a constrained regression approach aimed at agreement with experimental data while ensuring structural stability. However, this approach has its shortcomings and it may not be ideal to use the same set of parameters to study a wide variety of Si-based systems subjected to different thermodynamic conditions. In this study, NEMD simulations are performed on a Si bar to investigate the impact of bar-length, and the applied temperature gradient on the discrepancy between predictions and the available measurement for bulk thermal conductivity at 300 K by constructing statistical response surfaces at different temperatures. The approach helps quantify the discrepancy, observed to be largely dependent on the system-size, with minimal computational effort. A computationally efficient approach based on derivative-based sensitivity measures to construct a reduced-order polynomial chaos surrogate for NEMD predictions is also presented. The surrogate is used to perform parametric sensitivity analysis, forward propagation of the uncertainty, and calibration of the important SW potential parameters in a Bayesian setting. It is found that only two (out of seven) parameters contribute significantly to the uncertainty in bulk thermal conductivity estimates for Si.
机译:已知使用所谓的直接方法基于非平衡分子动力学(NEMD)的预测进行的体热导率估计严重低估,因为有限的模拟长度尺度无法模拟体传输。而且,通过恒温使系统经受温度梯度趋于不利地影响声子传输。另外,NEMD预测与原子间电势的选择以及与其参数相关的潜在值紧密相关。在硅(Si)的情况下,斯蒂林格-韦伯(SW)势能参数的标称估计值主要基于旨在与实验数据一致并同时确保结构稳定性的约束回归方法。然而,这种方法有其缺点,并且使用相同的参数集来研究经受不同热力学条件的各种硅基系统可能不是理想的。在这项研究中,在硅棒上进行了NEMD模拟,以研究棒长度的影响,以及通过构建不同温度下的统计响应面,对所施加的温度梯度对在300 K下的预测和可用的大导热系数测量之间的差异的影响。 。该方法有助于以最小的计算量来量化差异,该差异在很大程度上取决于系统大小。还提出了一种基于计算效率的有效方法,该方法基于基于导数的敏感度度量来构造用于NEMD预测的降阶多项式混沌替代。该代理用于执行参数灵敏度分析,不确定性的正向传播以及在贝叶斯设置中校准重要的SW势参数。发现只有两个参数(七个参数中)对硅的整体热导率估算的不确定性有重大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号