首页> 外文期刊>International Journal of Heat and Fluid Flow >Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting
【24h】

Numerical modelling of a melting-solidification cycle of a phase-change material with complete or partial melting

机译:完全或部分熔化的相变材料熔化-凝固循环的数值模型

获取原文
获取原文并翻译 | 示例
       

摘要

A high accuracy numerical model is used to simulate an alternate melting and solidification cycle of a phase change material (PCM). We use a second order (in time and space) finite-element method with mesh adaptivity to solve a single-domain model based on the Navier-Stokes-Boussinesq equations. An enthalpy method is applied to the energy equation. A Carman-Kozeny type penalty term is introduced in the momentum equation to bring the velocity to zero inside the solid region. The mesh is dynamically adapted at each time step to accurately capture the interface between solid and liquid phases, the boundary-layer structure at the walls and the multi-cellular unsteady convection in the liquid. We consider the basic configuration of a differentially heated square cavity filled with an octadecane paraffin and use experimental and numerical results from the literature to validate our numerical system. The first study case considers the complete melting of the PCM (liquid fraction of 95%), followed by a complete solidification. For the second case, the solidification is triggered after a partial melting (liquid fraction of 50%). Both cases are analysed in detail by providing temporal evolution of the solid-liquid interface, liquid fraction, Nusselt number and accumulated heat input. Different regimes are identified during the melting-solidification process and explained using scaling correlation analysis. Practical consequences of these two operating modes are finally discussed.
机译:高精度数值模型用于模拟相变材料(PCM)的交替熔化和凝固周期。我们使用具有网格自适应性的二阶(时空)有限元方法来解决基于Navier-Stokes-Boussinesq方程的单域模型。焓法应用于能量方程。在动量方程式中引入了Carman-Kozeny型罚分项,以使固体区域内的速度达到零。在每个时间步都动态调整网格,以准确捕获固相和液相之间的界面,壁上的边界层结构以及液体中的多细胞不稳定对流。我们考虑填充有十八烷烷烃的差热加热方腔的基本配置,并使用文献中的实验和数值结果来验证我们的数值系统。第一个研究案例考虑了PCM的完全熔化(液态部分为95%),然后完全凝固。对于第二种情况,在部分熔化(液体分数为50%)之后触发固化。通过提供固液界面,液体分数,努塞尔数和累积热量输入的时间演变,对这两种情况进行了详细分析。在熔融凝固过程中确定了不同的状态,并使用比例相关分析进行了解释。最后讨论了这两种操作模式的实际后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号