首页> 外文学位 >Analysis and numerical solution of nonlinear Volterra partial integrodifferential equations modeling swelling porous materials.
【24h】

Analysis and numerical solution of nonlinear Volterra partial integrodifferential equations modeling swelling porous materials.

机译:溶胀多孔材料的非线性Volterra偏积分微分方程的分析和数值解。

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear Volterra partial integrodifferential equation (VPIDE), derived using hybrid mixture theory and used to model swelling porous materials, is analyzed and solved numerically. The model application is an immersed porous material imbibing fluid through a cylinder's exterior boundary. A poignant example comes from the pharmaceutical industry where controlled release, drug-delivery systems are comprised of materials that permit nearly constant drug concentration profiles. In the considered application the release is controlled by the viscoelastic properties of a porous polymer network that swells when immersed in stomach fluid, consequently increasing the pore sizes and allowing the drug to escape. The VPIDE can be viewed as a combination of a non-linear diffusion equation and a constitutive equation modeling the viscoelastic effects. The viscoelastic model is expressed as an integral equation, thus adding an integral term to the non-linear partial differential equation. While this integral term poses both theoretical and numerical challenges, it provides fertile ground for interpretation and analysis.;Analysis of the VPIDE includes an existence and uniqueness proof which we establish under a given set of assumptions for the initial-boundary value problem. Additionally, a special case of the VPIDE is reduced to an ordinary differential equation via a derived similarity variable and solved. In order to solve the full VPIDE we derive a novel approach to constructing pseudospectral differentiation matrices in a polar geometry for computing the spatial derivatives. By construction, the norms of these matrices grow at the optimal rate of O (N2), for N-by- N matrices, versus O (N4) for conventional pseudospectral methods. This smaller norm offers an advantage over standard pseudospectral methods when solving time-dependent problems that require higher-resolution grids and, potentially, larger differentiation matrices. A method-of-lines approach is employed for the time-stepping using an implicit, fifth-order Runge-Kutta solver. After we show how to set up the equation and numerically solve it using this method, we show and interpret results for a variety of diffusion coefficients, permeability models, and parameters in order to study the model's behavior.
机译:利用混合混合理论推导了用于膨胀多孔材料建模的非线性Volterra偏积分微分方程(VPIDE),并进行了数值求解。该模型的应用是一种浸入多孔材料,通过圆柱体的外部边界吸收流体。制药业是一个令人发指的例子,在该行业中,控释,药物输送系统由允许几乎恒定的药物浓度曲线的材料组成。在所考虑的应用中,释放是由多孔聚合物网络的粘弹性质控制的,该聚合物网络浸入胃液时会膨胀,因此增加了孔径并允许药物逸出。 VPIDE可以看作是非线性扩散方程和模拟粘弹性效应的本构方程的组合。粘弹性模型表示为积分方程,因此将积分项添加到非线性偏微分方程。尽管该积分术语在理论和数值上都提出了挑战,但它为解释和分析提供了沃土。; VPIDE的分析包括一个存在性和唯一性证明,这是我们在给定初始边界值问题的一组给定假设下建立的。另外,通过导出的相似性变量将VPIDE的特殊情况简化为一个常微分方程并求解。为了解决完整的VPIDE,我们推导了一种新颖的方法来构造极几何中的伪光谱微分矩阵,以计算空间导数。通过构造,这些矩阵的范数对于N x N矩阵以O(N2)的最佳速率增长,而对于常规伪谱方法,则以O(N4)的最优速率增长。当解决需要更高分辨率网格以及可能需要更大微分矩阵的与时间相关的问题时,该较小的范数提供了优于标准伪谱方法的优势。在线方法采用隐式五阶Runge-Kutta解算器进行时间步进。在说明了如何建立方程式并使用此方法对其进行数值求解之后,我们展示并解释了各种扩散系数,渗透率模型和参数的结果,以便研究模型的行为。

著录项

  • 作者

    Wojciechowski, Keith J.;

  • 作者单位

    University of Colorado at Denver.;

  • 授予单位 University of Colorado at Denver.;
  • 学科 Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 石油、天然气工业;
  • 关键词

  • 入库时间 2022-08-17 11:44:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号